cholesky_decompose#
- pharmpy.modeling.cholesky_decompose(model, rvs=None)[source]#
Cholesky decomposition of joint normally distributed random variables
- Parameters:
model (Model) – Pharmpy model
rvs (Optional[Collection[str]]) – Names of random variables to decompose. None means all etas and is the default
- Returns:
Model – An updated Pharmpy model
Example
>>> from pharmpy.modeling import * >>> model = load_example_model("pheno") >>> model = create_joint_distribution(model, ['ETA_CL', 'ETA_VC']) >>> model = cholesky_decompose(model) >>> model.statements L₁ ₁₁ = SD_ETA_CL CORR_ETA_VC_ETA_CL⋅SD_ETA_CL⋅SD_ETA_VC ────────────────────────────────────── L₁ ₂₁ = L₁ ₁₁ _______________________ ╱ 2 2 L₁ ₂₂ = ╲╱ - L₁ ₂₁ + SD_ETA_VC ETA_CL_C = ETA_CL⋅L₁ ₁₁ ETA_VC_C = ETA_CL⋅L₁ ₂₁ + ETA_VC⋅L₁ ₂₂ TVCL = POP_CL⋅WGT TVV = POP_VC⋅WGT ⎧TVV⋅(COVAPGR + 1) for APGR < 5 ⎨ TVV = ⎩ TVV otherwise ETA_CL_C CL = TVCL⋅ℯ ETA_VC_C VC = TVV⋅ℯ V = VC S₁ = VC Bolus(AMT, admid=1) → CENTRAL ┌───────┐ │CENTRAL│──CL/V→ └───────┘ A_CENTRAL(t) ──────────── F = S₁ Y = EPS₁⋅F + F