calculate_prec_from_corrse#
- pharmpy.modeling.calculate_prec_from_corrse(corr, se)[source]#
Calculate precision matrix from a correlation matrix and standard errors
- Parameters:
corr (pd.DataFrame) – Correlation matrix
se (pd.Series) – Standard errors
- Returns:
pd.DataFrame – Precision matrix
Examples
>>> from pharmpy.modeling import calculate_prec_from_corrse >>> from pharmpy.tools import load_example_modelfit_results >>> results = load_example_modelfit_results("pheno") >>> corr = results.correlation_matrix >>> se = results.standard_errors >>> corr POP_CL POP_VC COVAPGR IIV_CL IIV_VC SIGMA POP_CL 1.000000 0.008433 -0.095506 -0.387063 0.098882 0.168004 POP_VC 0.008433 1.000000 -0.357003 0.138290 0.356831 0.239295 COVAPGR -0.095506 -0.357003 1.000000 -0.095767 -0.062857 0.153034 IIV_CL -0.387063 0.138290 -0.095767 1.000000 -0.185775 0.165104 IIV_VC 0.098882 0.356831 -0.062857 -0.185775 1.000000 -0.026388 SIGMA 0.168004 0.239295 0.153034 0.165104 -0.026388 1.000000 >>> calculate_prec_from_corrse(corr, se) POP_CL POP_VC COVAPGR IIV_CL IIV_VC SIGMA POP_CL 2.993418e+07 22260.995666 16027.840996 203633.422078 -39113.196303 -817311.952371 POP_VC 2.226100e+04 2129.850713 260.115336 -373.895598 -2799.329201 -7697.904374 COVAPGR 1.602784e+04 260.115336 187.053654 177.987259 -205.261518 -2224.519605 IIV_CL 2.036334e+05 -373.895598 177.987259 7542.266046 2472.031665 -10209.388516 IIV_VC -3.911320e+04 -2799.329201 -205.261518 2472.031665 22348.204432 9193.183296 SIGMA -8.173120e+05 -7697.904374 -2224.519605 -10209.388516 9193.183296 249977.511621
See also
calculate_se_from_cov
Standard errors from covariance matrix
calculate_se_from_prec
Standard errors from precision matrix
calculate_corr_from_cov
Correlation matrix from covariance matrix
calculate_cov_from_prec
Covariance matrix from precision matrix
calculate_cov_from_corrse
Covariance matrix from correlation matrix and standard errors
calculate_prec_from_cov
Precision matrix from covariance matrix
calculate_corr_from_prec
Correlation matrix from precision matrix