Source code for pharmpy.modeling.expressions

from __future__ import annotations

import re
from dataclasses import dataclass
from itertools import filterfalse
from typing import Iterable, Literal, Optional, Sequence, TypeVar, Union

from pharmpy.basic import Expr, TExpr, TSymbol
from pharmpy.deps import networkx as nx
from pharmpy.deps import sympy
from pharmpy.internals.expr.assumptions import assume_all
from pharmpy.internals.expr.leaves import free_images_and_symbols
from pharmpy.internals.expr.subs import subs
from pharmpy.internals.graph.directed.connected_components import strongly_connected_component_of
from pharmpy.internals.graph.directed.inverse import inverse as graph_inverse
from pharmpy.internals.graph.directed.reachability import reachable_from
from pharmpy.model import (
    Assignment,
    Compartment,
    CompartmentalSystem,
    Model,
    Statement,
    Statements,
    output,
)

from .parameters import get_omegas, get_sigmas, get_thetas, replace_fixed_thetas
from .random_variables import replace_non_random_rvs

T = TypeVar('T')
U = TypeVar('U')


[docs] def get_observation_expression(model: Model): """Get the full symbolic expression for the observation according to the model This function currently only support models without ODE systems Parameters ---------- model : Model Pharmpy model object Returns ------- Expression Symbolic expression Examples -------- >>> from pharmpy.modeling import load_example_model, get_observation_expression >>> model = load_example_model("pheno_linear") >>> expr = get_observation_expression(model) >>> print(expr.unicode()) D_EPSETA1_2⋅EPS₁⋅(ETA₂ - OETA₂) + D_ETA1⋅(ETA₁ - OETA₁) + D_ETA2⋅(ETA₂ - OETA₂) + EPS₁⋅(D_EPS1 + D_EPSETA1_1⋅(ETA₁ - OETA₁)) + OPRED """ # noqa E501 stats = model.statements # FIXME: Handle other DVs dv = list(model.dependent_variables.keys())[0] for i, s in enumerate(stats): if s.symbol == dv: y = s.expression break else: raise ValueError('Could not locate dependent variable expression') for j in range(i, -1, -1): y = y.subs({stats[j].symbol: stats[j].expression}) return y
[docs] def get_individual_prediction_expression(model: Model): """Get the full symbolic expression for the modelled individual prediction This function currently only support models without ODE systems Parameters ---------- model : Model Pharmpy model object Returns ------- Expression Symbolic expression Examples -------- >>> from pharmpy.modeling import load_example_model, get_individual_prediction_expression >>> model = load_example_model("pheno_linear") >>> get_individual_prediction_expression(model) D_ETA1*(ETA_1 - OETA1) + D_ETA2*(ETA_2 - OETA2) + OPRED See Also -------- get_population_prediction_expression : Get full symbolic epression for the population prediction """ return get_observation_expression(model).subs( {Expr.symbol(eps): 0 for eps in model.random_variables.epsilons.names} )
[docs] def get_population_prediction_expression(model: Model): """Get the full symbolic expression for the modelled population prediction This function currently only support models without ODE systems Parameters ---------- model : Model Pharmpy model object Returns ------- Expression Symbolic expression Examples -------- >>> from pharmpy.modeling import load_example_model, get_population_prediction_expression >>> model = load_example_model("pheno_linear") >>> get_population_prediction_expression(model) -D_ETA1*OETA1 - D_ETA2*OETA2 + OPRED See also -------- get_individual_prediction_expression : Get full symbolic epression for the individual prediction """ return get_individual_prediction_expression(model).subs( {Expr.symbol(eta): 0 for eta in model.random_variables.etas.names} )
[docs] def calculate_eta_gradient_expression(model: Model): """Calculate the symbolic expression for the eta gradient This function currently only support models without ODE systems Parameters ---------- model : Model Pharmpy model object Returns ------- Expression Symbolic expression Examples -------- >>> from pharmpy.modeling import load_example_model, calculate_eta_gradient_expression >>> model = load_example_model("pheno_linear") >>> calculate_eta_gradient_expression(model) [D_ETA1, D_ETA2] See also -------- calculate_epsilon_gradient_expression : Epsilon gradient """ y = get_individual_prediction_expression(model) d = [y.diff(Expr.symbol(x)) for x in model.random_variables.etas.names] return d
[docs] def calculate_epsilon_gradient_expression(model: Model): """Calculate the symbolic expression for the epsilon gradient This function currently only support models without ODE systems Parameters ---------- model : Model Pharmpy model object Returns ------- Expression Symbolic expression Examples -------- >>> from pharmpy.modeling import load_example_model, calculate_epsilon_gradient_expression >>> model = load_example_model("pheno_linear") >>> calculate_epsilon_gradient_expression(model) [D_EPS1 + D_EPSETA1_1*(ETA_1 - OETA1) + D_EPSETA1_2*(ETA_2 - OETA2)] See also -------- calculate_eta_gradient_expression : Eta gradient """ y = get_observation_expression(model) d = [y.diff(Expr.symbol(x)) for x in model.random_variables.epsilons.names] return d
[docs] def create_symbol(model: Model, stem: str, force_numbering: bool = False): """Create a new unique variable symbol given a model Parameters ---------- model : Model Pharmpy model object stem : str First part of the new variable name force_numbering : bool Forces addition of number to name even if variable does not exist, e.g. COVEFF → COVEFF1 Returns ------- Symbol Created symbol with unique name Examples -------- >>> from pharmpy.modeling import load_example_model, create_symbol >>> model = load_example_model("pheno") >>> create_symbol(model, "TEMP") TEMP >>> create_symbol(model, "TEMP", force_numbering=True) TEMP1 >>> create_symbol(model, "CL") CL1 """ return _create_symbol( model.statements, model.parameters, model.random_variables, model.datainfo, stem, force_numbering, )
def _create_symbol(statements, parameters, random_variables, datainfo, stem, force_numbering): symbols = [str(symbol) for symbol in statements.free_symbols] params = [param.name for param in parameters] rvs = random_variables.names dataset_col = datainfo.names all_names = symbols + params + rvs + dataset_col if str(stem) not in all_names and not force_numbering: return Expr(str(stem)) i = 1 while True: candidate = f'{stem}{i}' if candidate not in all_names: return Expr(candidate) i += 1 def _find_eta_assignments(model): # NOTE: This locates all assignment to ETAs of symbols that do not depend on # any other ETA statements = model.statements.before_odes etas = {Expr.symbol(eta) for eta in model.random_variables.etas.names} found = set() leafs = [] for i, s in reversed(list(enumerate(statements))): if ( s.symbol not in found and not etas.isdisjoint(s.free_symbols) and len(etas & statements[:i].full_expression(s.expression).free_symbols) == 1 ): leafs.append((i, s)) found.update(s.free_symbols) return reversed(leafs)
[docs] def mu_reference_model(model: Model): r"""Convert model to use mu-referencing Mu-referencing an eta is to separately define its actual mu (mean) parameter. For example: :math:`CL = \theta_1 e^{\eta_1}` with :math:`\eta_1` following a zero-mean normal distribution would give :math:`\mu_1 = \log{\theta_1}` and :math:`CL = e^{\mu_1 + \eta_1}` Parameters ---------- model : Model Pharmpy model object Returns ------- Model Pharmpy model object Example ------- >>> from pharmpy.modeling import load_example_model, mu_reference_model >>> model = load_example_model("pheno") >>> model = mu_reference_model(model) >>> model.statements.before_odes TVCL = POP_CL⋅WGT TVV = POP_VC⋅WGT ⎧TVV⋅(COVAPGR + 1) for APGR < 5 TVV = ⎩ TVV otherwise μ₁ = log(TVCL) ETA_CL + μ₁ CL = ℯ μ₂ = log(TVV) ETA_VC + μ₂ VC = ℯ V = VC S₁ = VC """ if has_mu_reference(model): return model index = {Expr.symbol(eta): i for i, eta in enumerate(model.random_variables.etas.names, 1)} etas = set(index) offset = 0 statements = model.statements for old_ind, assignment in _find_eta_assignments(model): # NOTE: The sequence of old_ind must be increasing eta = next(iter(etas.intersection(assignment.expression.free_symbols))) old_def = assignment.expression._sympy_() dep = old_def.as_independent(eta)[1] mu = Expr.symbol(f'mu_{index[eta]}') if mu in old_def.free_symbols: # If mu reference is already used, ignore pass elif old_ind == model.statements.find_assignment_index(assignment.symbol): new_def = subs(dep, {eta: mu + eta}) mu_expr = sympy.solve(old_def - new_def, mu)[0] insertion_ind = offset + old_ind statements = ( statements[0:insertion_ind] + Assignment.create(mu, mu_expr) + Assignment.create(assignment.symbol, new_def) + statements[insertion_ind + 1 :] ) offset += 1 # NOTE: We need this offset because we replace one # statement by two statements else: # Parameter is manipulated 'after' adding IIV old_def = assignment.expression._sympy_() # Remove IIV from first definition remove_iiv_def = old_def.as_independent(eta)[0] insertion_ind = offset + old_ind statements = ( statements[0:insertion_ind] + Assignment.create(assignment.symbol, remove_iiv_def) + statements[insertion_ind + 1 :] ) # Add mu referencing to last definition of parameter instead last_ind = model.statements.find_assignment_index(assignment.symbol) last_def = model.statements.find_assignment(assignment.symbol).expression new_def = subs(dep, {eta: mu + eta}) mu_expr = sympy.solve(subs(old_def, {remove_iiv_def: last_def}) - new_def, mu)[0] insertion_ind = offset + last_ind statements = ( statements[0:insertion_ind] + Assignment.create(mu, mu_expr) + Assignment.create(assignment.symbol, new_def) + statements[insertion_ind + 1 :] ) offset += 1 # NOTE: We need this offset because we replace one # statement by two statements model = model.replace(statements=statements).update_source() return model
[docs] def has_mu_reference(model: Model) -> bool: """Check if model is Mu-reference or not. Will return True if each parameter with an ETA is dependent on a Mu parameter. Parameters ---------- model : Model Pharmpy model object Returns ------- bool Whether the model is mu referenced """ ind_index_assignments = list(_find_eta_assignments(model)) ind_parameters = [a[1].symbol for a in ind_index_assignments] mu_regex = re.compile(r'^mu_\d*$', re.IGNORECASE) for ind_param in ind_parameters: ind_statement = model.statements.find_assignment(ind_param) if not any(re.match(mu_regex, str(p)) for p in ind_statement.free_symbols): return False return True
[docs] def get_mu_connected_to_parameter(model: Model, parameter: str) -> str: """Return Mu name connected to parameter If the given parameter is not dependent on any Mu, None is returned Parameters ---------- model : Model Pharmpy model object. parameter : str Name of parameter which to find Mu parameter for. Returns ------- str Name of Mu parameter or None """ mu_regex = r'^mu_\d*$' for p in model.statements.find_assignment(parameter).free_symbols: if match := re.match(mu_regex, str(p)): return match[0] return None
[docs] def simplify_expression(model: Model, expr: Union[str, TExpr]): """Simplify expression given constraints in model Parameters ---------- model : Model Pharmpy model object expr : TExpr or str Expression to simplify Returns ------- Expression Simplified expression Example ------- >>> from pharmpy.modeling import load_example_model, simplify_expression >>> model = load_example_model("pheno") >>> simplify_expression(model, "Abs(POP_CL)") POP_CL """ return _simplify_expression_from_parameters(expr, model.parameters)
def _simplify_expression_from_parameters(expr, parameters) -> Expr: expr = sympy.sympify(expr) d = {} for p in parameters: if p.fix: s = sympy.Float(p.init) elif p.upper < 0: s = sympy.Symbol(p.name, real=True, negative=True) d[s] = p.symbol elif p.upper <= 0: s = sympy.Symbol(p.name, real=True, nonpositive=True) d[s] = p.symbol elif p.lower > 0: s = sympy.Symbol(p.name, real=True, positive=True) d[s] = p.symbol elif p.lower >= 0: s = sympy.Symbol(p.name, real=True, nonnegative=True) d[s] = p.symbol else: s = sympy.Symbol(p.name, real=True) d[s] = p.symbol expr = subs(expr, {p.symbol: s}) # Remaining symbols should all be real for s in expr.free_symbols: if s.is_real is not True: new = sympy.Symbol(s.name, real=True) expr = subs(expr, {s: new}) d[new] = s simp = sympy.simplify(expr).subs(d) # Subs symbols back to non-constrained return Expr(simp)
[docs] def make_declarative(model: Model): """Make the model statments declarative Each symbol will only be declared once. Parameters ---------- model : Model Pharmpy model Returns ------- Model Pharmpy model object Examples -------- >>> from pharmpy.modeling import * >>> model = load_example_model("pheno") >>> model.statements.before_odes TVCL = POP_CL⋅WGT TVV = POP_VC⋅WGT ⎧TVV⋅(COVAPGR + 1) for APGR < 5 TVV = ⎩ TVV otherwise ETA_CL CL = TVCL⋅ℯ ETA_VC VC = TVV⋅ℯ V = VC S₁ = VC >>> model = make_declarative(model) >>> model.statements.before_odes TVCL = POP_CL⋅WGT ⎧POP_VC⋅WGT⋅(COVAPGR + 1) for APGR < 5 TVV = ⎩ POP_VC⋅WGT otherwise ETA_CL CL = TVCL⋅ℯ ETA_VC VC = TVV⋅ℯ V = VC S₁ = VC """ assigned_symbols = set() duplicated_symbols = {} # symbol to last index for i, s in enumerate(model.statements): if not isinstance(s, Assignment): continue symb = s.symbol if symb in assigned_symbols: if symb not in duplicated_symbols: duplicated_symbols[symb] = [] duplicated_symbols[symb].append(i) else: assigned_symbols.add(symb) current = {} newstats = [] for i, s in enumerate(model.statements): if not isinstance(s, Assignment): s = s.subs(current) newstats.append(s) elif s.symbol in duplicated_symbols: if i not in duplicated_symbols[s.symbol]: current[s.symbol] = s.expression else: duplicated_symbols[s.symbol] = duplicated_symbols[s.symbol][1:] if duplicated_symbols[s.symbol]: current[s.symbol] = s.expression.subs(current) else: ass = Assignment.create(s.symbol, s.expression.subs(current)) newstats.append(ass) del current[s.symbol] else: ass = Assignment.create(s.symbol, s.expression.subs(current)) newstats.append(ass) model = model.replace(statements=Statements(newstats)) return model.update_source()
[docs] def cleanup_model(model: Model): """Perform various cleanups of a model This is what is currently done * Make model statements declarative, i.e. only one assignment per symbol * Inline all assignments of one symbol, e.g. X = Y * Remove all random variables with no variability (i.e. with omegas fixed to zero) * Put fixed thetas directly in the model statements Notes ----- When creating NONMEM code from the cleaned model Pharmpy might need to add certain assignments to make it in line with what NONMEM requires. Parameters ---------- model : Model Pharmpy model object Returns ------- Model Updated model Examples -------- >>> from pharmpy.modeling import * >>> model = load_example_model("pheno") >>> model.statements TVCL = POP_CL⋅WGT TVV = POP_VC⋅WGT ⎧TVV⋅(COVAPGR + 1) for APGR < 5 TVV = ⎩ TVV otherwise ETA_CL CL = TVCL⋅ℯ ETA_VC VC = TVV⋅ℯ V = VC S₁ = VC Bolus(AMT, admid=1) → CENTRAL ┌───────┐ │CENTRAL│──CL/V→ └───────┘ A_CENTRAL(t) ──────────── F = S₁ Y = EPS₁⋅F + F >>> model = cleanup_model(model) >>> model.statements TVCL = POP_CL⋅WGT ⎧POP_VC⋅WGT⋅(COVAPGR + 1) for APGR < 5 TVV = ⎩ POP_VC⋅WGT otherwise ETA_CL CL = TVCL⋅ℯ ETA_VC VC = TVV⋅ℯ V = VC Bolus(AMT, admid=1) → CENTRAL ┌───────┐ │CENTRAL│──CL/V→ └───────┘ A_CENTRAL(t) ──────────── F = VC Y = EPS₁⋅F + F """ model = make_declarative(model) current = {} newstats = [] for s in model.statements: if isinstance(s, Assignment) and s.expression.is_symbol(): current[s.symbol] = s.expression else: n = s.subs(current) newstats.append(n) model = model.replace(statements=Statements(newstats)) model = replace_non_random_rvs(model) model = replace_fixed_thetas(model) return model
[docs] def greekify_model(model: Model, named_subscripts: bool = False): """Convert to using greek letters for all population parameters Parameters ---------- model : Model Pharmpy model named_subscripts : bool Use previous parameter names as subscripts. Default is to use integer subscripts Returns ------- Model Pharmpy model object Examples -------- >>> from pharmpy.modeling import * >>> model = load_example_model("pheno") >>> model.statements TVCL = POP_CL⋅WGT TVV = POP_VC⋅WGT ⎧TVV⋅(COVAPGR + 1) for APGR < 5 TVV = ⎩ TVV otherwise ETA_CL CL = TVCL⋅ℯ ETA_VC VC = TVV⋅ℯ V = VC S₁ = VC Bolus(AMT, admid=1) → CENTRAL ┌───────┐ │CENTRAL│──CL/V→ └───────┘ A_CENTRAL(t) ──────────── F = S₁ Y = EPS₁⋅F + F >>> model = greekify_model(cleanup_model(model)) >>> model.statements TVCL = WGT⋅θ₁ ⎧WGT⋅θ₂⋅(θ₃ + 1) for APGR < 5 TVV = ⎩ WGT⋅θ₂ otherwise η₁ CL = TVCL⋅ℯ η₂ VC = TVV⋅ℯ V = VC Bolus(AMT, admid=1) → CENTRAL ┌───────┐ │CENTRAL│──CL/V→ └───────┘ A_CENTRAL(t) ──────────── F = VC Y = F⋅ε₁ + F """ def get_subscript(param, i, named_subscripts): if named_subscripts: if isinstance(param, str): subscript = param else: subscript = param.name else: subscript = i return subscript def get_2d_subscript(param, row, col, named_subscripts): if named_subscripts: subscript = param.name else: subscript = f'{row}{col}' return subscript subs = {} for i, theta in enumerate(get_thetas(model), start=1): subscript = get_subscript(theta, i, named_subscripts) subs[theta.symbol] = Expr.symbol(f"theta_{subscript}") omega = model.random_variables.covariance_matrix for row in range(omega.rows): for col in range(omega.cols): if col > row: break elt = omega[row, col] if elt == 0: continue subscript = get_2d_subscript(elt, row + 1, col + 1, named_subscripts) subs[elt] = Expr.symbol(f"omega_{subscript}") sigma = model.random_variables.covariance_matrix for row in range(sigma.rows): for col in range(sigma.cols): if col > row: break elt = sigma[row, col] if elt == 0: continue subscript = get_2d_subscript(elt, row + 1, col + 1, named_subscripts) subs[elt] = Expr.symbol(f"sigma_{subscript}") for i, eta in enumerate(model.random_variables.etas.names, start=1): subscript = get_subscript(eta, i, named_subscripts) subs[Expr.symbol(eta)] = Expr.symbol(f"eta_{subscript}") for i, epsilon in enumerate(model.random_variables.epsilons.names, start=1): subscript = get_subscript(epsilon, i, named_subscripts) subs[Expr.symbol(epsilon)] = Expr.symbol(f"epsilon_{subscript}") from pharmpy.modeling import rename_symbols model = rename_symbols(model, subs) return model
[docs] def get_individual_parameters( model: Model, level: Literal['iiv', 'iov', 'random', 'all'] = 'all', dv: Union[TSymbol, int, None] = None, ) -> list[str]: """Retrieves all individual parameters in a :class:`pharmpy.model`. By default all individual parameters will be found even ones having no random effect. The level arguments makes it possible to find only those having any random effect or only those having a certain random effect. Using the dv option will give all individual parameters affecting a certain dv. Note that the DV for PD in a PKPD model often also is affected by the PK parameters. Parameters ---------- model : Model Pharmpy model to retrieve the individuals parameters from level : {'iiv', 'iov', 'random', 'all'} The variability level to look for: 'iiv', 'iov', 'random' or 'all' (default) dv : Union[Expr, str, int, None] Name or DVID of dependent variable. None for all (default) Return ------ list[str] A list of the parameter names as strings Example ------- >>> from pharmpy.modeling import * >>> model = load_example_model("pheno") >>> get_individual_parameters(model) ['CL', 'VC'] >>> get_individual_parameters(model, 'iiv') ['CL', 'VC'] >>> get_individual_parameters(model, 'iov') [] See also -------- get_pd_parameters get_pk_parameters get_rv_parameters has_random_effect """ # FIXME: Support multiple DVs model = make_declarative(model) model = _replace_trivial_redefinitions(model) statements = model.statements # Arrow means is depending on full_graph = statements._create_dependency_graph() all_statements = set(full_graph.nodes) theta_eta_deps = _find_theta_eta_dependents(model, full_graph) eps_deps = _find_eps_dependents(model, full_graph) separable_statements = _find_separable_statements(model) ode_statement = _find_ode_statement(model) dv_statements = _find_dv_statements(model) time_deps = _find_time_dependents(model, full_graph) all_candidates = ( all_statements.intersection(theta_eta_deps) - eps_deps - separable_statements - ode_statement - dv_statements - time_deps ) parameter_symbs = set() if dv is None: dvs = model.dependent_variables.keys() else: dvs = {get_dv_symbol(model, dv)} for y in dvs: ind = statements.find_assignment_index(y) gsub = _subgraph_of(full_graph, ind) gsub = _cut_partial_odes(model, gsub, ind) candidates = set(gsub.nodes).intersection(all_candidates) parameter_indices = _find_individual_parameters(gsub, candidates) parameter_symbs |= {statements[i].symbol for i in parameter_indices} if level == 'random': wanted_levels = {'iov', 'iiv'} elif level == 'iiv': wanted_levels = {'iiv'} elif level == 'iov': wanted_levels = {'iov'} else: wanted_levels = None if wanted_levels is not None: filtered = set() for param in parameter_symbs: levels = _random_levels_of_parameter(model, full_graph, param) if not wanted_levels.isdisjoint(levels): filtered.add(param) else: filtered = parameter_symbs return sorted([s.name for s in filtered])
def _subgraph_of(g, ind): gsub = g.subgraph(nx.descendants(g, ind) | {ind}) return gsub def _cut_partial_odes(model, g, dv): # Cut not needed deps of the ode-system for this dv # This prevents the entire ode-system to be needed in case # of a disjoint system. odes = model.statements.ode_system if odes is None: return g def dep_funcs(eq): from sympy.core.function import AppliedUndef funcs = eq._sympy_().atoms(AppliedUndef) funcs = {Expr(func) for func in funcs} return funcs def dep_amounts(ode_deps, amounts): deps = set(amounts) for amount in amounts: deps |= set(nx.descendants(ode_deps, amount)) return deps ode_deps = nx.DiGraph() for eq in odes.eqs: fn = dep_funcs(eq.lhs).pop() ode_deps.add_node(fn) for eq in odes.eqs: lhs_func = dep_funcs(eq.lhs).pop() rhs_funcs = dep_funcs(eq.rhs) - {lhs_func} for fn in rhs_funcs: ode_deps.add_edge(lhs_func, fn) all_dep_funcs = set() for i in g.nodes(): s = model.statements[i] if isinstance(s, Assignment): all_dep_funcs |= dep_funcs(s.expression) deps = dep_amounts(ode_deps, all_dep_funcs) dep_symbs = set() nondep_symbs = set() for eq in odes.eqs: lhs_func = dep_funcs(eq.lhs).pop() if lhs_func in deps: dep_symbs |= eq.free_symbols else: nondep_symbs |= eq.free_symbols not_needed_symbs = nondep_symbs - dep_symbs for i, s in enumerate(model.statements): if isinstance(s, CompartmentalSystem): ode_index = i break g = g.copy() for i, s in enumerate(model.statements): if i in g and isinstance(s, Assignment) and s.symbol in not_needed_symbs: try: g.remove_edge(ode_index, i) except nx.NetworkXError: pass try: g.remove_edge(i, ode_index) except nx.NetworkXError: pass g = _subgraph_of(g, dv) # Remove all nodes no longer connected return g def _random_levels_of_parameter(model, g, param): ind = model.statements.find_assignment_index(param) iiv_symbs = model.random_variables.iiv.symbols iov_symbs = model.random_variables.iov.symbols levels = set() for node in nx.dfs_preorder_nodes(g, ind): if not model.statements[node].rhs_symbols.isdisjoint(iiv_symbs): levels.add('iiv') if not model.statements[node].rhs_symbols.isdisjoint(iov_symbs): levels.add('iov') return sorted(levels) def _find_ode_statement(model): for i, s in enumerate(model.statements): if isinstance(s, CompartmentalSystem): return {i} return set() def _find_dv_statements(model): inds = set() for i, s in enumerate(model.statements): if isinstance(s, Assignment) and s.symbol in model.dependent_variables.keys(): inds.add(i) return inds def _find_separable_statements(model): # Statements with only assignment dependencies # where these are dependencies of other assignments statements = model.statements all_assigned_symbols = _get_all_assigned_symbols(model) candidates = { i for i, s in enumerate(statements) if isinstance(s, Assignment) and s.rhs_symbols.issubset(all_assigned_symbols) } separable = set() for i in candidates: rhs = statements[i].rhs_symbols for j, s in enumerate(statements): if i != j and not rhs.isdisjoint(s.rhs_symbols): separable.add(i) break return separable def _get_all_assigned_symbols(model): statements = model.statements all_assigned_symbols = { statement.symbol for statement in statements if isinstance(statement, Assignment) } return all_assigned_symbols def _replace_trivial_redefinitions(model): # Remove and replace X = Y and X = 1/Y statements = model.statements all_assigned_symbols = _get_all_assigned_symbols(model) d = {} keep = [] for s in statements: if isinstance(s, Assignment) and ( s.expression in all_assigned_symbols or 1 / s.expression in all_assigned_symbols ): if s.expression in d.keys(): d[s.symbol] = d[s.expression] else: d[s.symbol] = s.expression else: keep.append(s) new = Statements(tuple(keep)).subs(d) return model.replace(statements=new) def _find_individual_parameters(g, candidates): # Starting from all sinks of g find all deepest candidate nodes keep = set() current_step = _sinks(g) while current_step: next_step = set() for node in current_step: pred = set(g.predecessors(node)) if node in candidates: if pred.isdisjoint(candidates): keep.add(node) else: next_step.update(pred) else: next_step.update(pred) current_step = next_step return keep def _sinks(g): return (node for node, out_degree in g.out_degree() if out_degree == 0) def _find_time_dependents(model, g): direct = _find_direct_time_dependents(model) return _find_dependents(g, direct) def _find_dependents(g, nodes): deps = nodes.copy() for i in nodes: ancestors = nx.ancestors(g, i) deps.update(ancestors) return deps def _find_direct_param_dependents(model, g, eps=False): # Look for statements that are directly depending on # either (thetas, omegas or etas) or (sigmas or epsilons) deps = set() if not eps: thetas_and_omegas = get_thetas(model) + get_omegas(model) pop_params = set(thetas_and_omegas.symbols) rvs = set(model.random_variables.etas.symbols) else: sigmas = get_sigmas(model) pop_params = set(sigmas.symbols) rvs = set(model.random_variables.epsilons.symbols) all_symbs = pop_params | rvs for i in g.nodes: s = model.statements[i] if not all_symbs.isdisjoint(s.rhs_symbols): deps.add(i) return deps def _find_theta_eta_dependents(model, g): direct = _find_direct_param_dependents(model, g) return _find_dependents(g, direct) def _find_eps_dependents(model, g): direct = _find_direct_param_dependents(model, g, eps=True) return _find_dependents(g, direct) def _find_direct_time_dependents(model): statements = model.statements odes = statements.ode_system if odes is None: return set() return {i for i, s in enumerate(statements) if odes.t in s.rhs_symbols} def depends_on(model: Model, symbol: str, other: str): return _depends_on_any_of( model.statements.before_odes, Expr.symbol(symbol), [Expr.symbol(other)] ) def _depends_on_any_of( assignments: Statements, symbol: sympy.Symbol, symbols: Iterable[sympy.Symbol] ): dependency_graph = _dependency_graph(assignments) if symbol not in dependency_graph: raise KeyError(symbol) # NOTE: Could be faster by returning immediately once found return not reachable_from({symbol}, lambda x: dependency_graph.get(x, [])).isdisjoint(symbols)
[docs] def has_random_effect( model: Model, parameter: str, level: Literal['iiv', 'iov', 'all'] = 'all' ) -> bool: """Decides whether the given parameter of a :class:`pharmpy.model` has a random effect. Parameters ---------- model : Model Input Pharmpy model parameter: str Input parameter level : {'iiv', 'iov', 'all'} The variability level to look for: 'iiv', 'iov', or 'all' (default) Return ------ bool Whether the given parameter has a random effect Example ------- >>> from pharmpy.modeling import * >>> model = load_example_model("pheno") >>> has_random_effect(model, 'S1') True >>> has_random_effect(model, 'CL', 'iiv') True >>> has_random_effect(model, 'CL', 'iov') False See also -------- get_individual_parameters get_rv_parameters """ rvs = _rvs(model, level) symbol = Expr.symbol(parameter) return _depends_on_any_of(model.statements.before_odes, symbol, rvs.symbols)
[docs] def get_rv_parameters(model: Model, rv: str) -> list[str]: """Retrieves parameters in :class:`pharmpy.model.Model` given a random variable. Parameters ---------- model : Model Pharmpy model to retrieve parameters from rv : str Name of random variable to retrieve Return ------ list[str] A list of parameter names for the given random variable Example ------- >>> from pharmpy.modeling import * >>> model = load_example_model("pheno") >>> get_rv_parameters(model, 'ETA_CL') ['CL'] See also -------- has_random_effect get_pk_parameters get_individual_parameters """ if rv not in model.random_variables.names: raise ValueError(f'Could not find random variable: {rv}') ind_param = get_individual_parameters(model, level="random") rv_parameters = [] for param in ind_param: if Expr.symbol(rv) in model.statements.dependencies(param): rv_parameters.append(param) if not rv_parameters: raise ValueError(f"Cannot find any parameter connected to '{rv}'.") else: return sorted(map(str, rv_parameters))
[docs] def get_parameter_rv( model: Model, parameter: str, var_type: Literal['iiv', 'iov'] = 'iiv' ) -> list[str]: """Retrieves name of random variable in :class:`pharmpy.model.Model` given a parameter. Parameters ---------- model : Model Pharmpy model to retrieve parameters from parameter : str Name of parameter to retrieve random variable from var_type: {'iiv', 'iov'} Variability type: iiv (default) or iov Return ------ list[str] A list of random variable names for the given parameter Example ------- >>> from pharmpy.modeling import * >>> model = load_example_model("pheno") >>> get_parameter_rv(model, 'CL') ['ETA_CL'] See also -------- get_rv_parameters has_random_effect get_pk_parameters get_individual_parameters """ if parameter not in list(map(str, model.statements.free_symbols)): raise ValueError(f'Could not find parameter {parameter}') if parameter in model.random_variables.names: raise ValueError(f"{parameter} is a random variable. Only parameters are accepted as input") natural_assignments = _get_natural_assignments(model.statements.before_odes) rv = list( map( lambda rv_string: Expr.symbol(rv_string), getattr(model.random_variables, var_type).names, ) ) dependency_graph = graph_inverse(_dependency_graph(natural_assignments)) return sorted(map(str, _filter_symbols(dependency_graph, rv, {Expr.symbol(parameter)})))
@dataclass(frozen=True) class AssignmentGraphNode: expression: Expr index: int previous: dict[Expr, AssignmentGraphNode] def _make_assignments_graph(statements: Statements) -> dict[sympy.Symbol, AssignmentGraphNode]: last_assignments: dict[Expr, AssignmentGraphNode] = {} for i, statement in enumerate(statements): if not isinstance(statement, Assignment): continue expr_as_sympy = sympy.sympify(statement.expression) node = AssignmentGraphNode( expr_as_sympy, i, { symbol: last_assignments[symbol] for symbol in expr_as_sympy.free_symbols if symbol in last_assignments }, ) last_assignments[sympy.sympify(statement.symbol)] = node return last_assignments def remove_covariate_effect_from_statements( model: Model, before_odes: Statements, parameter: str, covariate: str ) -> Iterable[Statement]: assignments = _make_assignments_graph(before_odes) thetas = {sympy.sympify(symb) for symb in _theta_symbols(model)} new_before_odes = list(before_odes) symbol = sympy.Symbol(parameter) graph_node = assignments[symbol] tree_node = _remove_covariate_effect_from_statements_recursive( thetas, graph_node.previous, new_before_odes, symbol, graph_node.expression, sympy.Symbol(covariate), None, ) assert tree_node.changed assert tree_node.contains_theta if tree_node.changed: new_before_odes[graph_node.index] = Assignment.create( Expr.symbol(parameter), tree_node.expression ) return new_before_odes def _neutral(expr: Expr) -> sympy.Integer: expr = Expr(expr) if expr.is_add(): return sympy.Integer(0) if expr.is_mul(): return sympy.Integer(1) if expr.is_pow(): return sympy.Integer(1) raise ValueError(f'{type(expr)}: {repr(expr)} ({expr.free_symbols})') def _theta_symbols(model: Model) -> set[sympy.Symbol]: rvs_fs = model.random_variables.free_symbols return {p.symbol for p in model.parameters if p.symbol not in rvs_fs} def _depends_on_any(symbols: set[sympy.Symbol], expr: sympy.Expr) -> bool: return any(map(lambda s: s in symbols, expr.free_symbols)) def _is_constant(thetas: set[sympy.Symbol], expr: sympy.Expr) -> bool: return all(map(lambda s: s in thetas, expr.free_symbols)) def _is_univariate(thetas: set[sympy.Symbol], expr: sympy.Expr, variable: sympy.Symbol) -> bool: return all(map(lambda s: s in thetas, expr.free_symbols - {variable})) def simplify_model( model: Model, old_statements: Iterable[Statement], statements: Iterable[Statement] ): odes = model.statements.ode_system fs = odes.free_symbols if odes is not None else set() old_fs = fs.copy() kept_statements_reversed = [] for old_statement, statement in reversed(list(zip(old_statements, statements))): if not isinstance(statement, Assignment): kept_statements_reversed.append(statement) continue assert isinstance(old_statement, Assignment) if (old_statement == statement and statement.symbol not in old_fs) or ( statement.symbol in fs and statement.symbol != statement.expression ): kept_statements_reversed.append(statement) fs.discard(statement.symbol) fs.update(statement.expression.free_symbols) old_fs.discard(old_statement.symbol) old_fs.update(old_statement.expression.free_symbols) kept_thetas = fs.intersection(_theta_symbols(model)) kept_statements = list(reversed(kept_statements_reversed)) return kept_thetas, kept_statements @dataclass(frozen=True) class ExpressionTreeNode: expression: Expr changed: bool constant: bool contains_theta: bool def _full_expression(assignments: dict[sympy.Symbol, AssignmentGraphNode], expr: sympy.Expr): return expr.xreplace( { symbol: _full_expression(node.previous, node.expression) for symbol, node in assignments.items() } ) def _remove_covariate_effect_from_statements_recursive( thetas: set[Expr], assignments: dict[Expr, AssignmentGraphNode], statements: list[Assignment], symbol: Expr, expression: Expr, covariate: Expr, parent: Union[None, Expr], ) -> ExpressionTreeNode: if not expression.args: if expression in assignments: # NOTE: expression is a symbol and is defined in a previous assignment graph_node = assignments[expression] tree_node = _remove_covariate_effect_from_statements_recursive( thetas, graph_node.previous, statements, expression, graph_node.expression, covariate, parent, ) if tree_node.changed: statements[graph_node.index] = Assignment.create(expression, tree_node.expression) return ExpressionTreeNode( expression, tree_node.changed, tree_node.constant, tree_node.contains_theta ) if expression == covariate: # NOTE: expression is the covariate symbol for which we want to # remove all effects return ExpressionTreeNode(_neutral(parent), True, True, False) # NOTE: Other atom return ExpressionTreeNode( expression, False, _is_constant(thetas, expression), _depends_on_any(thetas, expression) ) if isinstance(expression, sympy.Piecewise): if any(map(lambda t: covariate in t[1].free_symbols, expression.args)): # NOTE: At least one condition depends on the covariate if all( map( lambda t: _is_univariate( thetas, _full_expression(assignments, t[1]), covariate ), expression.args, ) ): # NOTE: If expression is piecewise univariate and condition depends on # covariate, return simplest expression from cases expr = min( (t[0] for t in expression.args), key=sympy.count_ops, ) tree_node = _remove_covariate_effect_from_statements_recursive( thetas, assignments, statements, symbol, expr, covariate, parent ) return ExpressionTreeNode( tree_node.expression, True, tree_node.constant, tree_node.contains_theta ) else: raise NotImplementedError( 'Cannot handle multivariate Piecewise where condition depends on covariate.' ) children = list( map( lambda expr: _remove_covariate_effect_from_statements_recursive( thetas, assignments, statements, symbol, expr, covariate, expression ), expression.args, ) ) # TODO: Take THETA limits into account. Currently we assume any # offset/factor can be compensated but this is not true in general. can_be_scaled_or_offset = any(map(lambda n: not n.changed and n.contains_theta, children)) changed = any(map(lambda n: n.changed, children)) is_constant = all(map(lambda n: n.constant, children)) contains_theta = any(map(lambda n: n.contains_theta, children)) if not changed: return ExpressionTreeNode(expression, False, is_constant, contains_theta) if not can_be_scaled_or_offset: return ExpressionTreeNode( expression.func(*map(lambda n: n.expression, children)), True, is_constant, contains_theta, ) return ExpressionTreeNode( expression.func( *map( lambda n: ( _neutral(expression) if n.changed and n.constant and n.expression != symbol else n.expression ), children, ) ), True, is_constant, contains_theta, )
[docs] def get_pk_parameters( model: Model, kind: Literal['absorption', 'distribution', 'elimination', 'all'] = 'all' ) -> list[str]: """Retrieves PK parameters in :class:`pharmpy.model.Model`. Parameters ---------- model : Model Pharmpy model to retrieve the PK parameters from kind : {'absorption', 'distribution', 'elimination', 'all'} The type of parameter to retrieve: 'absorption', 'distribution', 'elimination', or 'all' (default). Return ------ list[str] A list of the PK parameter names of the given model Example ------- >>> from pharmpy.modeling import * >>> model = load_example_model("pheno") >>> get_pk_parameters(model) ['CL', 'VC'] >>> get_pk_parameters(model, 'absorption') [] >>> get_pk_parameters(model, 'distribution') ['VC'] >>> get_pk_parameters(model, 'elimination') ['CL'] See also -------- get_individual_parameters get_rv_parameters """ pkparams = get_individual_parameters(model, dv=1) if len(model.dependent_variables) == 2: dmparams = _get_drug_metabolite_parameters(model, dv=2) if dmparams: pkparams = list(set(pkparams).union(dmparams)) model = make_declarative(model) model = _replace_trivial_redefinitions(model) if kind != 'all': symbs = {str(symb) for symb in _pk_free_symbols(model, kind)} pkparams = set(pkparams).intersection(symbs) return sorted(pkparams)
def _get_drug_metabolite_parameters(model, dv=2): statements = model.statements ode = statements.ode_system dv1_deps = [ Expr(s) for s in sympy.sympify( model.statements.after_odes.full_expression(get_dv_symbol(model, dv=1)) ).atoms(sympy.Function) ] dv1_comp = None dv2_deps = [ Expr(s) for s in sympy.sympify( model.statements.after_odes.full_expression(get_dv_symbol(model, dv=dv)) ).atoms(sympy.Function) ] dv2_comp = None comp_names = ode.compartment_names for comp in [ode.find_compartment(name) for name in comp_names]: amounts = comp.amount if amounts in dv1_deps: dv1_comp = comp if amounts in dv2_deps: dv2_comp = comp if dv2_comp is not None: rate = ode.get_flow(dv1_comp, dv2_comp) if rate != 0: return get_individual_parameters(model, dv=2) else: None
[docs] def get_pd_parameters(model: Model) -> list[str]: """Retrieves PD parameters in :class:`pharmpy.model.Model`. Parameters ---------- model : Model Pharmpy model to retrieve the PD parameters from Return ------ list[str] A list of the PD parameter names of the given model Example ------- >>> from pharmpy.modeling import * >>> model = load_example_model("pheno") >>> model = set_direct_effect(model, "linear") >>> get_pd_parameters(model) ['B', 'SLOPE'] See also -------- get_pk_parameters """ pkparams = get_individual_parameters(model, dv=1) pkpdparams = get_individual_parameters(model, dv=2) pdparams = sorted(set(pkpdparams) - set(pkparams)) return pdparams
def _rvs(model: Model, level: str): if level == 'iiv': return model.random_variables.iiv if level == 'iov': return model.random_variables.iov if level == 'all': return model.random_variables.etas raise ValueError(f'Cannot handle level `{level}`') def _get_natural_assignments(before_odes): # Return assignments where assignments that are constants (e.g. X=1), # single length expressions (e.g. S1=V), and divisions between parameters # (e.g. K=CL/V) have been filtered out classified_assignments = list(_classify_assignments(list(_assignments(before_odes)))) natural_assignments = list(_remove_synthetic_assignments(classified_assignments)) return natural_assignments def _remap_compartmental_system(sset, natural_assignments): # Return compartmental system where rates that are synthetic assignments # have been substituted with their full definition (e.g K -> CL/V) cs = sset.ode_system assignments = list(_assignments(sset.before_odes)) for assignment in reversed(assignments): # FIXME: Can be made more general, doesn't cover cases with recursively defined symbols (e.g. V=V/2) if assignment not in natural_assignments: # NOTE: Substitution must be made in this order cs = cs.subs({assignment.symbol: assignment.expression}) return cs def _pk_free_symbols(model, kind: str) -> Iterable[sympy.Symbol]: cs = model.statements.ode_system symbols = set() if kind == 'absorption': central = cs.central_compartment for dosing in cs.dosing_compartments: comp = dosing while comp != central: symbols |= comp.free_symbols comp, rate = cs.get_compartment_outflows(comp)[0] # Assumes only one flow symbols |= rate.free_symbols elif kind == 'distribution': central = cs.central_compartment periphs = cs.find_peripheral_compartments() for p in periphs: symbols |= cs.get_flow(central, p).free_symbols symbols |= cs.get_flow(p, central).free_symbols outflow = cs.get_flow(central, output) cl, v = outflow.as_numer_denom() if v != 1: symbols |= {v} else: ass = model.statements.find_assignment(cl) cl2, v2 = ass.expression.as_numer_denom() if v2 != 1: symbols |= {v2} elif kind == 'elimination': central = cs.central_compartment outflow = cs.get_flow(central, output) cl, v = outflow.as_numer_denom() if v != 1: symbols |= {cl} else: ass = model.statements.find_assignment(cl) cl2, v2 = ass.expression.as_numer_denom() if v2 != 1: symbols |= {cl2} else: symbols |= {cl} else: raise ValueError(f'Cannot handle kind `{kind}`') return symbols def _pk_free_symbols_from_compartment( cs: CompartmentalSystem, compartment: Compartment ) -> Iterable[sympy.Symbol]: vertices = _get_component(cs, compartment) edges = _get_component_edges(cs, vertices) is_central = compartment == cs.central_compartment return _get_component_free_symbols(is_central, vertices, edges) def _get_component(cs: CompartmentalSystem, compartment: Compartment) -> set[Compartment]: central_component_vertices = strongly_connected_component_of( cs.central_compartment, lambda u: map(lambda flow: flow[0], cs.get_compartment_outflows(u)), lambda u: map(lambda flow: flow[0], cs.get_compartment_inflows(u)), ) if compartment == cs.central_compartment: return central_component_vertices flows = cs.get_compartment_inflows if compartment == output else cs.get_compartment_outflows return reachable_from( {compartment}, lambda u: filterfalse( central_component_vertices.__contains__, map(lambda flow: flow[0], flows(u)), ), ) def _get_component_edges(cs: CompartmentalSystem, vertices: set[Compartment]): return ( ((u, v, rate) for v in vertices for u, rate in cs.get_compartment_inflows(v)) if output in vertices else ((u, v, rate) for u in vertices for v, rate in cs.get_compartment_outflows(u)) ) def _get_component_free_symbols( is_central: bool, vertices: set[Compartment], edges: Iterable[tuple[Compartment, Compartment, sympy.Expr]], ) -> Iterable[sympy.Symbol]: for u, v, rate in edges: # NOTE: These must not necessarily be outgoing edges assert u in vertices or v in vertices if u not in vertices or v not in vertices: # NOTE: This handles splitting the rate K = CL / V if len(rate.free_symbols) == 2: a, b = rate.free_symbols if rate == a / b: yield a if v in vertices else b continue elif rate == b / a: yield b if v in vertices else a continue if (u in vertices and v in vertices) or not is_central: # NOTE: This handles all internal edges, and in/out rates (KA, CL/V) yield from rate.free_symbols for node in vertices: if node == output: yield from set() else: yield from node.free_symbols def _assignments(sset: Statements): return filter(lambda statement: isinstance(statement, Assignment), sset) def _filter_symbols( dependency_graph: dict[sympy.Symbol, set[sympy.Symbol]], roots: set[sympy.Symbol], leaves: Union[set[sympy.Symbol], None] = None, ) -> set[sympy.Symbol]: dependents = graph_inverse(dependency_graph) free_symbols = reachable_from(roots, lambda x: dependency_graph.get(x, [])) reachable = ( free_symbols if leaves is None else ( reachable_from( leaves, lambda x: dependents.get(x, []), ).intersection(free_symbols) ) ) return reachable.difference(dependents.keys()).intersection(dependency_graph.keys()) def _classify_assignments(assignments: Sequence[Assignment]): dependencies = _dependency_graph(assignments) # Keep all symbols that have dependencies (e.g. remove constants X=1) symbols = set(filter(dependencies.__getitem__, dependencies.keys())) for assignment in assignments: symbol = assignment.symbol expression = assignment.expression fs = expression.free_symbols if symbol not in fs: # NOTE: We skip redefinitions (e.g. CL=CL+1) if Expr.symbol('t') in fs: # FIXME: Should use ode.t here at some point yield 'synthetic', assignment continue elif len(fs) == 1: a = next(iter(fs)) if a in symbols: yield 'synthetic', assignment # E.g. S1=V continue elif len(fs) == 2: it = iter(fs) a = next(it) b = next(it) if ( a in symbols and b in symbols and ( expression == a / b or expression == b / a or expression == a * b or expression == b * a ) ): yield 'synthetic', assignment # E.g. K=CL/V continue yield 'natural', assignment def _remove_synthetic_assignments(classified_assignments: list[tuple[str, Assignment]]): assignments = [] last_defined = {} for t, assignment in reversed(classified_assignments): if t == 'synthetic': substitution_starts_at_index = last_defined.get(assignment.symbol, 0) assignments = [ ( succeeding if i < substitution_starts_at_index else Assignment.create( succeeding.symbol, succeeding.expression.subs({assignment.symbol: assignment.expression}), ) ) for i, succeeding in enumerate(assignments) ] else: last_defined[assignment.symbol] = len(assignments) assignments.append(assignment) return reversed(assignments) def _dependency_graph(assignments: Sequence[Assignment]): dependencies = {} for assignment in assignments: symbol = assignment.symbol fs = assignment.expression.free_symbols previous_def = dependencies.get(symbol) dependencies[symbol] = fs if previous_def is not None: # NOTE: This handles redefinition of symbols by expanding # the previous definition of symbol into existing definitions for key, value in dependencies.items(): if symbol in value: dependencies[key] = (value - {symbol}) | previous_def return dependencies
[docs] def is_real(model: Model, expr: TExpr) -> Optional[bool]: """Determine if an expression is real valued given constraints of a model Parameters ---------- model : Model Pharmpy model expr : str or expression Expression to test Return ------ bool or None True if expression is real, False if not and None if unknown Example ------- >>> from pharmpy.modeling import load_example_model, is_real >>> import sympy >>> model = load_example_model("pheno") >>> is_real(model, "CL") True """ expr = sympy.sympify(expr) return sympy.ask(sympy.Q.real(expr), assume_all(sympy.Q.real, free_images_and_symbols(expr)))
[docs] def is_linearized(model: Model): """Determine if a model is linearized Parameters ---------- model : Model Pharmpy model Return ------ bool True if model has been linearized and False otherwise Example ------- >>> from pharmpy.modeling import load_example_model, is_linearized >>> model1 = load_example_model("pheno") >>> is_linearized(model1) False >>> model2 = load_example_model("pheno_linear") >>> is_linearized(model2) True """ statements = model.statements if statements.ode_system is not None: return False lhs = set() rhs = set() for s in statements: name = s.symbol.name if name == 'Y': # To support linearized frem models break lhs.add(name) rhs_names = {symb.name for symb in s.expression.free_symbols} rhs.update(rhs_names) for name in lhs: m = re.match(r'BASE|BSUM|BASE_TERMS|IPRED|ERR|ESUM|ERROR_TERMS', name) if not m: return False for name in rhs: m = re.match( r'D_ETA|ETA|OETA|BASE|BSUM|BASE_TERMS|OPRED|EPS|D_EPS|D_EPSETA|ERR|ESUM|ERROR_TERMS|IPRED', name, ) if not m: return False return True
[docs] def get_dv_symbol(model: Model, dv: Union[Expr, str, int, None] = None) -> Expr: """Get the symbol for a certain dvid or dv and check that it is valid Parameters ---------- model : Model Pharmpy model dv : Union[sympy.Symbol, str, int] Either a dv symbol, str or dvid. If None (default) return the only or first dv. Return ------ sympy.Symbol DV symbol Example ------- >>> from pharmpy.modeling import load_example_model, get_dv_symbol >>> model = load_example_model("pheno") >>> get_dv_symbol(model, "Y") Y >>> get_dv_symbol(model, 1) Y """ if dv is None: dv = next(iter(model.dependent_variables)) elif isinstance(dv, int): for key, val in model.dependent_variables.items(): if dv == val: dv = key break else: raise ValueError(f"DVID {dv} not defined in model") else: try: dv = Expr(dv) except Exception: raise TypeError( f"dv is of type {type(dv)} has to be one of Symbol or str representing " "a dv or int representing a dvid" ) if dv not in model.dependent_variables: raise ValueError(f"DV {dv} not defined in model") return dv