ColumnInfo#

class pharmpy.model.ColumnInfo(name, type='unknown', unit=1, scale='ratio', continuous=None, categories=None, drop=False, datatype='float64', descriptor=None)[source]#

Bases: Immutable

Information about one data column

Parameters:
  • name (str) – Colum name

  • type (str) – Type (see the “type” attribute)

  • unit (str) – Unit (see the “unit” attribute)

  • scale (str) – Scale of measurement (see the “scale” attribute)

  • continuous (bool) – True if continuous or False if discrete

  • categories (Optional[Union[tuple, dict]]) – Tuple of all possible categories or dict from value to label for each category

  • drop (bool) – Should column be dropped (i.e. barred from being used)

  • datatype (str) – Pandas datatype or special Pharmpy datatype (see the “dtype” attribute)

  • descriptor (str) – Descriptor (kind) of data

Attributes Summary

categories

List or dict of allowed categories

continuous

Is the column data continuous

datatype

Column datatype

descriptor

Kind of data

drop

Should this column be dropped

name

Column name

scale

Scale of measurement

type

Type of column

unit

Unit of the column data

Methods Summary

convert_datatype_to_pd_dtype(datatype)

Convert Pharmpy datatype to pandas dtype

convert_pd_dtype_to_datatype(dtype)

Convert pandas dtype to Pharmpy datatype

create(name[, type, unit, scale, ...])

from_dict(d)

get_all_categories()

Get a list of all categories

is_categorical()

Check if the column data is categorical

is_integer()

Check if the column datatype is integral

is_numerical()

Check if the column data is numerical

replace(**kwargs)

Replace properties and create a new ColumnInfo

to_dict()

Attributes Documentation

categories#

List or dict of allowed categories

continuous#

Is the column data continuous

True for continuous data and False for discrete. Note that nominal and ordinal data have to be discrete.

datatype#

Column datatype

datatype

Description

Size

Range

NA allowed?

int8

Signed integer

8 bits

-128 to +127.

No

int16

Signed integer

16 bits

-32,768 to +32,767.

No

int32

Signed integer

32 bits

-2,147,483,648 to +2,147,483,647.

No

int64

Signed integer

64 bits

-9,223,372,036,854,775,808 to 9,223,372,036,854,775,807.

No

uint8

Unsigned integer

8 bits

0 to 256.

No

uint16

Unsigned integer

16 bit

0 to 65,535.

No

uint32

Unsigned integer

32 bit

0 to 4,294,967,295.

No

uint64

Unsigned integer

64 bit

0 to 18,446,744,073,709,551,615

No

float16

Binary float

16 bits

≈ ±6.55×10⁴

Yes

float32

Binary float

32 bits

≈ ±3.4×10³⁸

Yes

float64

Binary float

64 bits

≈ ±1.8×10³⁰⁸

Yes

float128

Binary float

128 bits

≈ ±1.2×10⁴⁹³²

Yes

nmtran-time

NM-TRAN time

n

No

nmtran-date

NM-TRAN date

n

No

str

General string

n

No

The default, and most common datatype, is float64.

descriptor#

Kind of data

descriptor

Description

age

Age (since birth)

body height

Human body height

body surface area

Body surface area (calculated)

body weight

Human body weight

lean body mass

Lean body mass

fat free mass

Fat free mass

time after dose

Time after dose

plasma concentration

Concentration of substance in blood plasma

subject identifier

Unique integer identifier for a subject

observation identifier

Unique integer identifier for an observation

pk measurement

Any kind of PK measurement

pd measurement

Any kind of PD measurement

drop#

Should this column be dropped

name#

Column name

scale#

Scale of measurement

The statistical scale of measurement for the column data. Can be one of ‘nominal’, ‘ordinal’, ‘interval’ and ‘rational’.

type#

Type of column

type

Description

id

Individual identifier. Max one per DataFrame. All values have to be unique

idv

Independent variable. Max one per DataFrame.

dv

Observations of the dependent variable

dvid

Dependent variable ID

covariate

Covariate

dose

Dose amount

rate

Rate of infusion

additional

Number of additional doses

ii

Interdose interval

ss

Steady state dosing

event

0 = observation

mdv

0 = DV is observation value, 1 = DV is missing

admid

Administration ID

compartment

Compartment information (not yet exactly specified)

lloq

Lower limit of quantification

blq

Below limit of quantification indicator

unknown

Unkown type. This will be the default for columns that hasn’t been assigned a type

unit#

Unit of the column data

Custom units are allowed, but units that are available in sympy.physics.units can be recognized. The default unit is 1, i.e. without unit.

Methods Documentation

static convert_datatype_to_pd_dtype(datatype)[source]#

Convert Pharmpy datatype to pandas dtype

Parameters:

datatype (str) – String representing a Pharmpy datatype

Returns:

str – String representing a pandas dtype

Examples

>>> from pharmpy.model import ColumnInfo
>>> ColumnInfo.convert_datatype_to_pd_dtype("float64")
'float64'
>>> ColumnInfo.convert_datatype_to_pd_dtype("nmtran-date")
'str'
static convert_pd_dtype_to_datatype(dtype)[source]#

Convert pandas dtype to Pharmpy datatype

Parameters:

dtype (str) – String representing a pandas dtype

Returns:

str – String representing a Pharmpy datatype

Examples

>>> from pharmpy.model import ColumnInfo
>>> ColumnInfo.convert_pd_dtype_to_datatype("float64")
'float64'
classmethod create(name, type='unknown', unit=None, scale='ratio', continuous=None, categories=None, drop=False, datatype='float64', descriptor=None)[source]#
classmethod from_dict(d)[source]#
get_all_categories()[source]#

Get a list of all categories

is_categorical()[source]#

Check if the column data is categorical

Returns:

bool – True if categorical (nominal or ordinal) and False otherwise.

See also

is_numerical

Check if the column data is numerical

Examples

>>> from pharmpy.model import ColumnInfo
>>> col1 = ColumnInfo.create("WGT", scale='ratio')
>>> col1.is_categorical()
False
>>> col2 = ColumnInfo.create("ID", scale='nominal')
>>> col2.is_categorical()
True
is_integer()[source]#

Check if the column datatype is integral

Returns:

bool – True if of integral datatype

See also

is_categorical

Check if the column data is categorical

Examples

>>> from pharmpy.model import ColumnInfo
>>> col1 = ColumnInfo.create("WGT", scale='ratio')
>>> col1.is_integer()
False
is_numerical()[source]#

Check if the column data is numerical

Returns:

bool – True if numerical (interval or ratio) and False otherwise.

See also

is_categorical

Check if the column data is categorical

Examples

>>> from pharmpy.model import ColumnInfo
>>> col1 = ColumnInfo.create("WGT", scale='ratio')
>>> col1.is_numerical()
True
>>> col2 = ColumnInfo.create("ID", scale='nominal')
>>> col2.is_numerical()
False
replace(**kwargs)[source]#

Replace properties and create a new ColumnInfo

to_dict()[source]#