calculate_cov_from_corrse#
- pharmpy.modeling.calculate_cov_from_corrse(corr, se)[source]#
Calculate covariance matrix from a correlation matrix and standard errors
- Parameters:
corr (pd.DataFrame) – Correlation matrix
se (pd.Series) – Standard errors
- Returns:
pd.DataFrame – Covariance matrix
Examples
>>> from pharmpy.modeling import calculate_cov_from_corrse >>> from pharmpy.tools import load_example_modelfit_results >>> results = load_example_modelfit_results("pheno") >>> corr = results.correlation_matrix >>> se = results.standard_errors >>> corr POP_CL POP_VC COVAPGR IIV_CL IIV_VC SIGMA POP_CL 1.000000 0.008433 -0.095506 -0.387063 0.098882 0.168004 POP_VC 0.008433 1.000000 -0.357003 0.138290 0.356831 0.239295 COVAPGR -0.095506 -0.357003 1.000000 -0.095767 -0.062857 0.153034 IIV_CL -0.387063 0.138290 -0.095767 1.000000 -0.185775 0.165104 IIV_VC 0.098882 0.356831 -0.062857 -0.185775 1.000000 -0.026388 SIGMA 0.168004 0.239295 0.153034 0.165104 -0.026388 1.000000 >>> calculate_cov_from_corrse(corr, se) POP_CL POP_VC COVAPGR IIV_CL IIV_VC SIGMA POP_CL 4.408614e-08 4.761939e-08 -0.000002 -0.000001 1.552153e-07 8.042458e-08 POP_VC 4.761939e-08 7.233195e-04 -0.000804 0.000050 7.174494e-05 1.467293e-05 COVAPGR -1.679562e-06 -8.041749e-04 0.007015 -0.000108 -3.935789e-05 2.922264e-05 IIV_CL -1.090293e-06 4.989586e-05 -0.000108 0.000180 -1.863212e-05 5.049924e-06 IIV_VC 1.552153e-07 7.174494e-05 -0.000039 -0.000019 5.588923e-05 -4.497600e-07 SIGMA 8.042458e-08 1.467293e-05 0.000029 0.000005 -4.497600e-07 5.197990e-06
See also
calculate_se_from_cov
Standard errors from covariance matrix
calculate_se_from_prec
Standard errors from precision matrix
calculate_corr_from_cov
Correlation matrix from covariance matrix
calculate_cov_from_prec
Covariance matrix from precision matrix
calculate_prec_from_cov
Precision matrix from covariance matrix
calculate_prec_from_corrse
Precision matrix from correlation matrix and standard errors
calculate_corr_from_prec
Correlation matrix from precision matrix