ModelfitResults#
- class pharmpy.workflows.ModelfitResults(__version__='1.4.0', ofv=None, ofv_iterations=None, parameter_estimates=None, parameter_estimates_sdcorr=None, parameter_estimates_iterations=None, covariance_matrix=None, correlation_matrix=None, precision_matrix=None, standard_errors=None, standard_errors_sdcorr=None, relative_standard_errors=None, minimization_successful=None, minimization_successful_iterations=None, estimation_runtime=None, estimation_runtime_iterations=None, individual_ofv=None, individual_estimates=None, individual_estimates_covariance=None, residuals=None, predictions=None, derivatives=None, runtime_total=None, termination_cause=None, termination_cause_iterations=None, function_evaluations=None, function_evaluations_iterations=None, significant_digits=None, significant_digits_iterations=None, log_likelihood=None, log=None, evaluation=None, covstep_successful=None, gradients=None, gradients_iterations=(None,), warnings=None, individual_eta_samples=None)[source]#
Bases:
Results
Base class for results from a modelfit operation
- Variables:
correlation_matrix (pd.DataFrame) – Correlation matrix of the population parameter estimates
covariance_matrix (pd.DataFrame) – Covariance matrix of the population parameter estimates
precision_matrix (pd.DataFrame) – Precision matrix of the population parameter estimates
evaluation_ofv (float) – The objective function value as if the model was evaluated. Currently works for classical estimation methods by taking the OFV of the first iteration.
individual_ofv (pd.Series) – OFV for each individual
individual_estimates (pd.DataFrame) – Estimates for etas
individual_estimates_covariance (pd.Series) – Estimated covariance between etas
parameter_estimates (pd.Series) – Population parameter estimates
parameter_estimates_iterations (pd.DataFrame) – All recorded iterations for parameter estimates
parameter_estimates_sdcorr (pd.Series) – Population parameter estimates with variability parameters as standard deviations and correlations
residuals (pd.DataFrame) – Table of various residuals
predictions (pd.DataFrame) – Table of various predictions
derivaitves (pd.DataFrame) – Table of various derivatives
estimation_runtime (float) – Runtime for one estimation step
runtime_total (float) – Total runtime of estimation
standard_errors (pd.Series) – Standard errors of the population parameter estimates
standard_errors_sdcorr (pd.Series) – Standard errors of the population parameter estimates on standard deviation and correlation scale
relative_standard_errors (pd.Series) – Relative standard errors of the population parameter estimates
termination_cause (str) – The cause of premature termination. One of ‘maxevals_exceeded’ and ‘rounding_errors’
function_evaluations (int) – Number of function evaluations
evaluation (pd.Series) – A bool for each estimation step. True if this was a model evaluation and False otherwise
covstep_successful (bool or None) – Covariance status.
gradients (pd.Series) – Final parameter gradients
gradients_iterations (pd.DataFrame) – All recorded parameter gradients
warnings (list) – List of warnings
individual_eta_samples (pd.DataFrame) – Individual eta samples
Attributes Summary
Attributes Documentation
- correlation_matrix = None#
- covariance_matrix = None#
- covstep_successful = None#
- derivatives = None#
- estimation_runtime = None#
- estimation_runtime_iterations = None#
- evaluation = None#
- function_evaluations = None#
- function_evaluations_iterations = None#
- gradients = None#
- gradients_iterations = (None,)#
- individual_estimates = None#
- individual_estimates_covariance = None#
- individual_eta_samples = None#
- individual_ofv = None#
- log = None#
- log_likelihood = None#
- minimization_successful = None#
- minimization_successful_iterations = None#
- ofv = None#
- ofv_iterations = None#
- parameter_estimates = None#
- parameter_estimates_iterations = None#
- parameter_estimates_sdcorr = None#
- precision_matrix = None#
- predictions = None#
- relative_standard_errors = None#
- residuals = None#
- runtime_total = None#
- significant_digits = None#
- significant_digits_iterations = None#
- standard_errors = None#
- standard_errors_sdcorr = None#
- termination_cause = None#
- termination_cause_iterations = None#
- warnings = None#