EstimationStep#

class pharmpy.model.EstimationStep(method, interaction=False, parameter_uncertainty_method=None, evaluation=False, maximum_evaluations=None, laplace=False, isample=None, niter=None, auto=None, keep_every_nth_iter=None, residuals=(), predictions=(), solver=None, solver_rtol=None, solver_atol=None, tool_options={}, derivatives=(), individual_eta_samples=False)[source]#

Bases: ExecutionStep

Definition of one estimation operation

Attributes Summary

auto

Let estimation tool automatically add settings

derivatives

List of derivates to calculate when running

evaluation

Only perform model evaluation

individual_eta_samples

Should individual eta samples be generated

interaction

Preserve eta-epsilon interaction in the computation of the objective function

isample

Number of samples per subject (or similar) for EM methods

keep_every_nth_iter

Keep results for every nth iteration

laplace

Use the laplacian method

maximum_evaluations

Maximum allowable number of evaluations of the objective function

method

Name of the estimation method

niter

Number of iterations for EM methods

parameter_uncertainty_method

Method to use when estimating parameter uncertainty.

predictions

List of predictions to estimate

residuals

List of residuals to calculate

supported_methods

supported_parameter_uncertainty_methods

tool_options

Dictionary of tool specific options

Methods Summary

create(method[, interaction, ...])

from_dict(d)

replace(**kwargs)

Derive a new EstimationStep with new properties

to_dict()

Attributes Documentation

auto#

Let estimation tool automatically add settings

derivatives#

List of derivates to calculate when running

evaluation#

Only perform model evaluation

individual_eta_samples#

Should individual eta samples be generated

interaction#

Preserve eta-epsilon interaction in the computation of the objective function

isample#

Number of samples per subject (or similar) for EM methods

keep_every_nth_iter#

Keep results for every nth iteration

laplace#

Use the laplacian method

maximum_evaluations#

Maximum allowable number of evaluations of the objective function

method#

Name of the estimation method

niter#

Number of iterations for EM methods

parameter_uncertainty_method#

Method to use when estimating parameter uncertainty. Supported methods and their corresponding NMTRAN code:

Method

NMTRAN

Sandwich

$COVARIANCE

Cross-product gradient (SMAT)

$COVARIANCE MATRIX=S

Observed FIM (RMAT)

$COVARIANCE MATRIX=R

Expected FIM (EFIM)

$DESIGN

By default the following options are appended: UNCONDITIONAL: The uncertainty step is implemented regardless of how the estimation step terminates. PRINT=E: Print the eigenvalues of the correlation matrix. PRECOND=1: Perform up to 1 preconditioning cycle on the R matrix.

predictions#

List of predictions to estimate

residuals#

List of residuals to calculate

supported_methods = frozenset({'BAYES', 'FO', 'FOCE', 'IMP', 'IMPMAP', 'ITS', 'SAEM'})#
supported_parameter_uncertainty_methods = frozenset({'EFIM', 'RMAT', 'SANDWICH', 'SMAT'})#
tool_options#

Dictionary of tool specific options

Methods Documentation

classmethod create(method, interaction=False, parameter_uncertainty_method=None, evaluation=False, maximum_evaluations=None, laplace=False, isample=None, niter=None, auto=None, keep_every_nth_iter=None, residuals=(), predictions=(), solver=None, solver_rtol=None, solver_atol=None, tool_options={}, derivatives=(), individual_eta_samples=False)[source]#
classmethod from_dict(d)[source]#
replace(**kwargs)[source]#

Derive a new EstimationStep with new properties

to_dict()[source]#