EstimationStep#
- class pharmpy.model.EstimationStep(method, interaction=False, parameter_uncertainty_method=None, evaluation=False, maximum_evaluations=None, laplace=False, isample=None, niter=None, auto=None, keep_every_nth_iter=None, residuals=(), predictions=(), solver=None, solver_rtol=None, solver_atol=None, tool_options={}, derivatives=(), individual_eta_samples=False)[source]#
Bases:
ExecutionStep
Definition of one estimation operation
Attributes Summary
Let estimation tool automatically add settings
List of derivates to calculate when running
Only perform model evaluation
Should individual eta samples be generated
Preserve eta-epsilon interaction in the computation of the objective function
Number of samples per subject (or similar) for EM methods
Keep results for every nth iteration
Use the laplacian method
Maximum allowable number of evaluations of the objective function
Name of the estimation method
Number of iterations for EM methods
Method to use when estimating parameter uncertainty.
List of predictions to estimate
List of residuals to calculate
Dictionary of tool specific options
Methods Summary
create
(method[, interaction, ...])from_dict
(d)replace
(**kwargs)Derive a new EstimationStep with new properties
to_dict
()Attributes Documentation
- auto#
Let estimation tool automatically add settings
- derivatives#
List of derivates to calculate when running
- evaluation#
Only perform model evaluation
- individual_eta_samples#
Should individual eta samples be generated
- interaction#
Preserve eta-epsilon interaction in the computation of the objective function
- isample#
Number of samples per subject (or similar) for EM methods
- keep_every_nth_iter#
Keep results for every nth iteration
- laplace#
Use the laplacian method
- maximum_evaluations#
Maximum allowable number of evaluations of the objective function
- method#
Name of the estimation method
- niter#
Number of iterations for EM methods
- parameter_uncertainty_method#
Method to use when estimating parameter uncertainty. Supported methods and their corresponding NMTRAN code:
Method
NMTRAN
Sandwich
$COVARIANCE
Cross-product gradient (SMAT)
$COVARIANCE MATRIX=S
Observed FIM (RMAT)
$COVARIANCE MATRIX=R
Expected FIM (EFIM)
$DESIGN
By default the following options are appended: UNCONDITIONAL: The uncertainty step is implemented regardless of how the estimation step terminates. PRINT=E: Print the eigenvalues of the correlation matrix. PRECOND=1: Perform up to 1 preconditioning cycle on the R matrix.
- predictions#
List of predictions to estimate
- residuals#
List of residuals to calculate
- supported_methods = frozenset({'BAYES', 'FO', 'FOCE', 'IMP', 'IMPMAP', 'ITS', 'SAEM'})#
- supported_parameter_uncertainty_methods = frozenset({'EFIM', 'RMAT', 'SANDWICH', 'SMAT'})#
- tool_options#
Dictionary of tool specific options
Methods Documentation
- classmethod create(method, interaction=False, parameter_uncertainty_method=None, evaluation=False, maximum_evaluations=None, laplace=False, isample=None, niter=None, auto=None, keep_every_nth_iter=None, residuals=(), predictions=(), solver=None, solver_rtol=None, solver_atol=None, tool_options={}, derivatives=(), individual_eta_samples=False)[source]#