binarize_dataset#

pharmpy.modeling.binarize_dataset(model, columns, keep=False, all_levels=False)[source]#

Binarize dataset

Will create one column per category if specified, otherwise for all columns except for the last one. Will also update datainfo so that new columns have type covariate and is categorical.

Parameters:
  • model (Model) – Pharmpy model

  • columns (list[str]) – The columns to binarize or None for all marked as categorical

  • keep (bool) – Keep the original column in dataset (default is False)

  • all_levels (bool) – Create one column per level, otherwise skip last value (default is False)

Returns:

Model – Updated Pharmpy model

Examples

>>> from pharmpy.modeling import *
>>> model = load_example_model("pheno")
>>> model = binarize_dataset(model, ['APGR'])
>>> model.dataset
     ID   TIME   AMT  WGT    DV  FA1  FA2  APGR_1  APGR_2  APGR_3  APGR_4  APGR_5  APGR_6  APGR_7  APGR_8  APGR_9
0     1    0.0  25.0  1.4   0.0  1.0  1.0       0       0       0       0       0       0       1       0       0
1     1    2.0   0.0  1.4  17.3  0.0  0.0       0       0       0       0       0       0       1       0       0
2     1   12.5   3.5  1.4   0.0  1.0  1.0       0       0       0       0       0       0       1       0       0
3     1   24.5   3.5  1.4   0.0  1.0  1.0       0       0       0       0       0       0       1       0       0
4     1   37.0   3.5  1.4   0.0  1.0  1.0       0       0       0       0       0       0       1       0       0
..   ..    ...   ...  ...   ...  ...  ...     ...     ...     ...     ...     ...     ...     ...     ...     ...
739  59  108.3   3.0  1.1   0.0  1.0  1.0       0       0       0       0       0       1       0       0       0
740  59  120.5   3.0  1.1   0.0  1.0  1.0       0       0       0       0       0       1       0       0       0
741  59  132.3   3.0  1.1   0.0  1.0  1.0       0       0       0       0       0       1       0       0       0
742  59  144.8   3.0  1.1   0.0  1.0  1.0       0       0       0       0       0       1       0       0       0
743  59  146.8   0.0  1.1  40.2  0.0  0.0       0       0       0       0       0       1       0       0       0

[744 rows x 16 columns]