Model#
- class pharmpy.model.Model(name='', parameters=Parameters(), random_variables=, statements=, dataset=None, datainfo=Empty DataFrame Columns: [name, type, scale, continuous, categories, unit, drop, datatype, descriptor] Index: [], dependent_variables={y: 1}, observation_transformation=None, execution_steps=ExecutionSteps(), initial_individual_estimates=None, value_type='PREDICTION', description='', internals=None)[source]#
Bases:
Immutable
The Pharmpy model class
Attributes Summary
Model type specific code
Definitions of model statements
Dataset connected to model
The dependent variables of the model mapped to the corresponding DVIDs
A free text description of the model
Definitions of estimation steps
Initial estimates for individual parameters
Internal data for tool specific part of model
Name of the model
Transformation to be applied to the observation data
Definitions of population parameters
Definitions of random variables
Definitions of model statements
The type of the model value (dependent variables)
Methods Summary
create
(name[, parameters, random_variables, ...])from_dict
(d)has_same_dataset_as
(other)Check if this model has the same dataset as another model
parse_model
(path[, missing_data_token])Create a model object by parsing a model file of any supported type
parse_model_from_string
(code)Create a model object by parsing a string with model code of any supported type
replace
(**kwargs)to_dict
()Update source code of the model.
write_files
([path, force])Write all extra files needed for a specific external format.
Attributes Documentation
- code#
Model type specific code
- datainfo#
Definitions of model statements
See
pharmpy.Statements
- dataset#
Dataset connected to model
- dependent_variables#
The dependent variables of the model mapped to the corresponding DVIDs
- description#
A free text description of the model
- execution_steps#
Definitions of estimation steps
See
pharmpy.ExecutionSteps
- filename_extension = '.ppmod'#
- initial_individual_estimates#
Initial estimates for individual parameters
- internals#
Internal data for tool specific part of model
- name#
Name of the model
- observation_transformation#
Transformation to be applied to the observation data
- parameters#
Definitions of population parameters
See
pharmpy.Parameters
- random_variables#
Definitions of random variables
See
pharmpy.RandomVariables
- statements#
Definitions of model statements
See
pharmpy.Statements
- value_type#
The type of the model value (dependent variables)
By default this is set to ‘PREDICTION’ to mean that the model outputs a prediction. It could optionally be set to ‘LIKELIHOOD’ or ‘-2LL’ to let the model output the likelihood or -2*log(likelihood) of the prediction. If set to a symbol this variable can be used to change the type for different records. The model would then set this symbol to 0 for a prediction value, 1 for likelihood and 2 for -2ll.
Methods Documentation
- classmethod create(name, parameters=None, random_variables=None, statements=None, dataset=None, datainfo=Empty DataFrame Columns: [name, type, scale, continuous, categories, unit, drop, datatype, descriptor] Index: [], dependent_variables=None, observation_transformation=None, execution_steps=None, initial_individual_estimates=None, value_type='PREDICTION', description='', internals=None)[source]#
- has_same_dataset_as(other)[source]#
Check if this model has the same dataset as another model
- Parameters:
other (Model) – Another model
- Returns:
bool – True if both models have the same dataset
- static parse_model(path, missing_data_token=None)[source]#
Create a model object by parsing a model file of any supported type
- Parameters:
path (Path or str) – Path to a model file
missing_data_token (str) – Set to override the configuration
- Returns:
Model – A model object
- static parse_model_from_string(code)[source]#
Create a model object by parsing a string with model code of any supported type
- Parameters:
code (str) – Model code
- Returns:
Model – A model object