set_proportional_error_model#
- pharmpy.modeling.set_proportional_error_model(model, dv=None, data_trans=None, zero_protection=True)[source]#
Set a proportional error model. Initial estimate for new sigma is 0.09.
The error function being applied depends on the data transformation.
Data transformation
Proportional error
\(y\)
\(f + f \epsilon_1\)
\(log(y)\)
\(\log(f) + \epsilon_1\)
- Parameters:
model (Model) – Set error model for this model
dv (Union[Expr, str, int, None]) – Name or DVID of dependent variable. None for the default (first or only)
data_trans (str or expression) – A data transformation expression or None (default) to use the transformation specified by the model.
zero_protection (bool) – Set to True to add code protecting from IPRED=0
- Returns:
Model – Pharmpy model object
Examples
>>> from pharmpy.modeling import * >>> model = remove_error_model(load_example_model("pheno")) >>> model = set_proportional_error_model(model) >>> model.statements.after_odes A_CENTRAL(t) ──────────── F = S₁ ⎧2.225e-16 for F = 0 ⎨ IPREDADJ = ⎩ F otherwise Y = F + IPREDADJ⋅εₚ
>>> from pharmpy.modeling import * >>> model = remove_error_model(load_example_model("pheno")) >>> model = set_proportional_error_model( ... model, ... data_trans="log(Y)" ... ) >>> model.statements.after_odes A_CENTRAL(t) ──────────── F = S₁ ⎧2.225e-16 for F = 0 ⎨ IPREDADJ = ⎩ F otherwise Y = εₚ + log(IPREDADJ)
See also
set_additive_error_model
Additive error model
set_combined_error_model
Combined error model