run_modelsearch#
- pharmpy.tools.run_modelsearch(model, results, search_space, algorithm='reduced_stepwise', iiv_strategy='absorption_delay', rank_type='bic', cutoff=None, strictness='minimization_successful or (rounding_errors and sigdigs >= 0.1)', E=None, **kwargs)#
Run Modelsearch tool. For more details, see Modelsearch.
- Parameters:
model (Model) – Pharmpy model
results (ModelfitResults) – Results for model
search_space (str, ModelFeatures) – Search space to test. Either as a string or a ModelFeatures object.
algorithm ({‘exhaustive’, ‘exhaustive_stepwise’, ‘reduced_stepwise’}) – Algorithm to use.
iiv_strategy ({‘no_add’, ‘add_diagonal’, ‘fullblock’, ‘absorption_delay’}) – If/how IIV should be added to candidate models. Default is ‘absorption_delay’.
rank_type ({‘ofv’, ‘lrt’, ‘aic’, ‘bic’, ‘mbic’}) – Which ranking type should be used. Default is BIC.
cutoff (float) – Cutoff for which value of the ranking function that is considered significant. Default is None (all models will be ranked)
strictness (str or None) – Strictness criteria
E (float) – Expected number of predictors (used for mBIC). Must be set when using mBI
kwargs – Arguments to pass to tool
- Returns:
ModelSearchResults – Modelsearch tool result object
Examples
>>> from pharmpy.modeling import load_example_model >>> from pharmpy.tools import run_modelsearch, load_example_modelfit_results >>> model = load_example_model("pheno") >>> res = load_example_modelfit_results("pheno") >>> search_space = 'ABSORPTION(ZO);PERIPHERALS(1)' >>> run_modelsearch(model=model, results=res, search_space=search_space, algorithm='exhaustive')