set_additive_error_model#
- pharmpy.modeling.set_additive_error_model(model, dv=None, data_trans=None, series_terms=2)[source]#
Set an additive error model. Initial estimate for new sigma is \((min(DV)/2)²\).
The error function being applied depends on the data transformation. The table displays some examples.
Data transformation
Additive error
\(y\)
\(f + \epsilon_1\)
\(log(y)\)
\(\log(f) + \frac{\epsilon_1}{f}\)
- Parameters:
model (Model) – Set error model for this model
dv (Union[Expr, str, int, None]) – Name or DVID of dependent variable. None for the default (first or only)
data_trans (str or expression) – A data transformation expression or None (default) to use the transformation specified by the model. Series expansion will be used for approximation.
series_terms (int) – Number of terms to use for the series expansion approximation for data transformation.
- Returns:
Model – Pharmpy model object
Examples
>>> from pharmpy.modeling import set_additive_error_model, load_example_model >>> model = load_example_model("pheno") >>> model.statements.find_assignment("Y") Y = EPS₁⋅F + F >>> model = set_additive_error_model(model) >>> model.statements.find_assignment("Y") Y = F + εₐ
>>> from pharmpy.modeling import set_additive_error_model, load_example_model >>> model = load_example_model("pheno") >>> model.statements.find_assignment("Y") Y = EPS₁⋅F + F >>> model = set_additive_error_model(model, data_trans="log(Y)") >>> model.statements.find_assignment("Y") εₐ log(F) + ── Y = F
See also
set_proportional_error_model
Proportional error model
set_combined_error_model
Combined error model