set_direct_effect#
- pharmpy.modeling.set_direct_effect(model, expr)[source]#
Add an effect to a model.
Implemented PD models are:
Linear:
\[E = B \cdot (1 + \text{slope} \cdot C)\]Emax:
\[E = B \cdot \Bigg(1 + \frac {E_{max} \cdot C } { EC_{50} + C} \Bigg)\]Step effect:
\[E = \Biggl \lbrace {B \quad \text{if C} \leq 0 \atop B \cdot (1+ E_{max}) \quad \text{else}}\]Sigmoidal:
\[E=\Biggl \lbrace {B \cdot \Bigl(1+\frac{E_{max} \cdot C^n}{EC_{50}^n+C^n}\Bigl) \quad \ \text{if C}>0 \atop B \quad \text{else}}\]Log-linear:
\[E = \text{slope} \cdot \text{log}(C + C_0)\]
\(B\) is the baseline effect
- Parameters:
model (Model) – Pharmpy model
expr ({‘linear’, ‘emax’, ‘sigmoid’, ‘step’, ‘loglin’}) – Name of PD effect function.
- Returns:
Model – Pharmpy model object
Examples
>>> from pharmpy.modeling import * >>> model = load_example_model("pheno") >>> model = set_direct_effect(model, "linear") >>> model.statements.find_assignment("E") ⎛SLOPE⋅A_CENTRAL(t) ⎞ B⋅⎜────────────────── + 1⎟ E = ⎝ VC ⎠