calculate_se_from_prec#
- pharmpy.modeling.calculate_se_from_prec(precision_matrix)[source]#
Calculate standard errors from a precision matrix
- Parameters:
precision_matrix (pd.DataFrame) – Input precision matrix
- Returns:
pd.Series – Standard errors
Examples
>>> from pharmpy.modeling import calculate_se_from_prec >>> from pharmpy.tools import load_example_modelfit_results >>> results = load_example_modelfit_results("pheno") >>> prec = results.precision_matrix >>> prec POP_CL POP_VC COVAPGR IIV_CL IIV_VC SIGMA POP_CL 2.993428e+07 22261.039122 16027.859538 203633.930854 -39113.269503 -817314.801755 POP_VC 2.226104e+04 2129.852212 260.115313 -373.896066 -2799.330946 -7697.921603 COVAPGR 1.602786e+04 260.115313 187.053488 177.987340 -205.261483 -2224.522815 IIV_CL 2.036339e+05 -373.896066 177.987340 7542.279597 2472.034556 -10209.416944 IIV_VC -3.911327e+04 -2799.330946 -205.261483 2472.034556 22348.216559 9193.203130 SIGMA -8.173148e+05 -7697.921603 -2224.522815 -10209.416944 9193.203130 249978.454601 >>> calculate_se_from_prec(prec) POP_CL 0.000210 POP_VC 0.026895 COVAPGR 0.083756 IIV_CL 0.013416 IIV_VC 0.007476 SIGMA 0.002280 dtype: float64
See also
calculate_se_from_cov
Standard errors from covariance matrix
calculate_corr_from_cov
Correlation matrix from covariance matrix
calculate_cov_from_prec
Covariance matrix from precision matrix
calculate_cov_from_corrse
Covariance matrix from correlation matrix and standard errors
calculate_prec_from_cov
Precision matrix from covariance matrix
calculate_prec_from_corrse
Precision matrix from correlation matrix and standard errors
calculate_corr_from_prec
Correlation matrix from precision matrix