create_joint_distribution#
- pharmpy.modeling.create_joint_distribution(model, rvs=None, individual_estimates=None)[source]#
Combines some or all etas into a joint distribution.
The etas must be IIVs and cannot be fixed. Initial estimates for covariance between the etas is dependent on whether the model has results from a previous run. In that case, the correlation will be calculated from individual estimates, otherwise correlation will be set to 10%.
- Parameters:
model (Model) – Pharmpy model
rvs (list) – Sequence of etas or names of etas to combine. If None, all etas that are IIVs and non-fixed will be used (full block). None is default.
individual_estimates (pd.DataFrame) – Optional individual estimates to use for calculation of initial estimates
- Returns:
Model – Pharmpy model object
Examples
>>> from pharmpy.modeling import load_example_model, create_joint_distribution >>> model = load_example_model("pheno") >>> model.random_variables.etas ETA_CL ~ N(0, IIV_CL) ETA_VC ~ N(0, IIV_VC) >>> model = create_joint_distribution(model, ['ETA_CL', 'ETA_VC']) >>> model.random_variables.etas ⎡ETA_CL⎤ ⎧⎡0⎤ ⎡ IIV_CL IIV_CL_IIV_VC⎤⎫ ⎢ ⎥ ~ N⎪⎢ ⎥, ⎢ ⎥⎪ ⎣ETA_VC⎦ ⎩⎣0⎦ ⎣IIV_CL_IIV_VC IIV_VC ⎦⎭
See also
split_joint_distribution
split etas into separate distributions