calculate_corr_from_prec#
- pharmpy.modeling.calculate_corr_from_prec(precision_matrix)[source]#
Calculate correlation matrix from a precision matrix
- Parameters:
precision_matrix (pd.DataFrame) – Precision matrix
- Returns:
pd.DataFrame – Correlation matrix
Examples
>>> from pharmpy.modeling import calculate_corr_from_prec >>> from pharmpy.tools import load_example_modelfit_results >>> results = load_example_modelfit_results("pheno") >>> prec = results.precision_matrix >>> prec POP_CL POP_VC COVAPGR IIV_CL IIV_VC SIGMA POP_CL 2.993428e+07 22261.039122 16027.859538 203633.930854 -39113.269503 -817314.801755 POP_VC 2.226104e+04 2129.852212 260.115313 -373.896066 -2799.330946 -7697.921603 COVAPGR 1.602786e+04 260.115313 187.053488 177.987340 -205.261483 -2224.522815 IIV_CL 2.036339e+05 -373.896066 177.987340 7542.279597 2472.034556 -10209.416944 IIV_VC -3.911327e+04 -2799.330946 -205.261483 2472.034556 22348.216559 9193.203130 SIGMA -8.173148e+05 -7697.921603 -2224.522815 -10209.416944 9193.203130 249978.454601 >>> calculate_corr_from_prec(prec) POP_CL POP_VC COVAPGR IIV_CL IIV_VC SIGMA POP_CL 1.000000 0.008433 -0.095506 -0.387063 0.098882 0.168004 POP_VC 0.008433 1.000000 -0.357003 0.138290 0.356831 0.239295 COVAPGR -0.095506 -0.357003 1.000000 -0.095767 -0.062857 0.153034 IIV_CL -0.387063 0.138290 -0.095767 1.000000 -0.185775 0.165104 IIV_VC 0.098882 0.356831 -0.062857 -0.185775 1.000000 -0.026388 SIGMA 0.168004 0.239295 0.153034 0.165104 -0.026388 1.000000
See also
calculate_se_from_cov
Standard errors from covariance matrix
calculate_se_from_prec
Standard errors from precision matrix
calculate_corr_from_cov
Correlation matrix from covariance matrix
calculate_cov_from_prec
Covariance matrix from precision matrix
calculate_cov_from_corrse
Covariance matrix from correlation matrix and standard errors
calculate_prec_from_cov
Precision matrix from covariance matrix
calculate_prec_from_corrse
Precision matrix from correlation matrix and standard errors