set_combined_error_model#
- pharmpy.modeling.set_combined_error_model(model, dv=None, data_trans=None)[source]#
Set a combined error model. Initial estimates for new sigmas are \((min(DV)/2)²\) for proportional and 0.09 for additive.
The error function being applied depends on the data transformation.
Data transformation
Combined error
\(y\)
\(f + f \epsilon_1 + \epsilon_2\)
\(log(y)\)
\(\log(f) + \epsilon_1 + \frac{\epsilon_2}{f}\)
- Parameters:
model (Model) – Set error model for this model
dv (Union[Expr, str, int, None]) – Name or DVID of dependent variable. None for the default (first or only)
data_trans (str or expression) – A data transformation expression or None (default) to use the transformation specified by the model.
- Returns:
Model – Pharmpy model object
Examples
>>> from pharmpy.modeling import * >>> model = remove_error_model(load_example_model("pheno")) >>> model = set_combined_error_model(model) >>> model.statements.find_assignment("Y") Y = F⋅εₚ + F + εₐ
>>> from pharmpy.modeling import * >>> model = remove_error_model(load_example_model("pheno")) >>> model = set_combined_error_model(model, data_trans="log(Y)") >>> model.statements.find_assignment("Y") εₐ εₚ + log(F) + ── Y = F
See also
set_additive_error_model
Additive error model
set_proportional_error_model
Proportional error model