has_proportional_error_model#
- pharmpy.modeling.has_proportional_error_model(model, dv=None)[source]#
Check if a model has a proportional error model
Multiple dependent variables are supported. By default the only (in case of one) or the first (in case of many) dependent variable is going to be checked.
- Parameters:
model (Model) – The model to check
dv (Union[Expr, str, int, None]) – Name or DVID of dependent variable. None for the default (first or only)
- Returns:
bool – True if the model has a proportional error model and False otherwise
Examples
>>> from pharmpy.modeling import load_example_model, has_proportional_error_model >>> model = load_example_model("pheno") >>> has_proportional_error_model(model) True
See also
has_additive_error_model
Check if a model has an additive error model
has_combined_error_model
Check if a model has a combined error model
has_weighted_error_model
Check if a model has a weighted error model