calculate_se_from_cov#
- pharmpy.modeling.calculate_se_from_cov(cov)[source]#
Calculate standard errors from a covariance matrix
- Parameters:
cov (pd.DataFrame) – Input covariance matrix
- Returns:
pd.Series – Standard errors
Examples
>>> from pharmpy.modeling import calculate_se_from_cov >>> from pharmpy.tools import load_example_modelfit_results >>> results = load_example_modelfit_results("pheno") >>> cov = results.covariance_matrix >>> cov POP_CL POP_VC COVAPGR IIV_CL IIV_VC SIGMA POP_CL 4.408600e-08 4.761930e-08 -0.000002 -0.000001 1.552150e-07 8.042430e-08 POP_VC 4.761930e-08 7.233190e-04 -0.000804 0.000050 7.174490e-05 1.467290e-05 COVAPGR -1.679560e-06 -8.041750e-04 0.007015 -0.000108 -3.935790e-05 2.922260e-05 IIV_CL -1.090290e-06 4.989580e-05 -0.000108 0.000180 -1.863210e-05 5.049910e-06 IIV_VC 1.552150e-07 7.174490e-05 -0.000039 -0.000019 5.588920e-05 -4.497590e-07 SIGMA 8.042430e-08 1.467290e-05 0.000029 0.000005 -4.497590e-07 5.197970e-06 >>> calculate_se_from_cov(cov) POP_CL 0.000210 POP_VC 0.026895 COVAPGR 0.083756 IIV_CL 0.013416 IIV_VC 0.007476 SIGMA 0.002280 dtype: float64
See also
calculate_se_from_prec
Standard errors from precision matrix
calculate_corr_from_cov
Correlation matrix from covariance matrix
calculate_cov_from_prec
Covariance matrix from precision matrix
calculate_cov_from_corrse
Covariance matrix from correlation matrix and standard errors
calculate_prec_from_cov
Precision matrix from covariance matrix
calculate_prec_from_corrse
Precision matrix from correlation matrix and standard errors
calculate_corr_from_prec
Correlation matrix from precision matrix