calculate_se_from_cov#

pharmpy.modeling.calculate_se_from_cov(cov)[source]#

Calculate standard errors from a covariance matrix

Parameters:

cov (pd.DataFrame) – Input covariance matrix

Returns:

pd.Series – Standard errors

Examples

>>> from pharmpy.modeling import calculate_se_from_cov
>>> from pharmpy.tools import load_example_modelfit_results
>>> results = load_example_modelfit_results("pheno")
>>> cov = results.covariance_matrix
>>> cov
               POP_CL        POP_VC   COVAPGR    IIV_CL        IIV_VC         SIGMA
POP_CL   4.408600e-08  4.761930e-08 -0.000002 -0.000001  1.552150e-07  8.042430e-08
POP_VC   4.761930e-08  7.233190e-04 -0.000804  0.000050  7.174490e-05  1.467290e-05
COVAPGR -1.679560e-06 -8.041750e-04  0.007015 -0.000108 -3.935790e-05  2.922260e-05
IIV_CL  -1.090290e-06  4.989580e-05 -0.000108  0.000180 -1.863210e-05  5.049910e-06
IIV_VC   1.552150e-07  7.174490e-05 -0.000039 -0.000019  5.588920e-05 -4.497590e-07
SIGMA    8.042430e-08  1.467290e-05  0.000029  0.000005 -4.497590e-07  5.197970e-06
>>> calculate_se_from_cov(cov)
POP_CL     0.000210
POP_VC     0.026895
COVAPGR    0.083756
IIV_CL     0.013416
IIV_VC     0.007476
SIGMA      0.002280
dtype: float64

See also

calculate_se_from_prec

Standard errors from precision matrix

calculate_corr_from_cov

Correlation matrix from covariance matrix

calculate_cov_from_prec

Covariance matrix from precision matrix

calculate_cov_from_corrse

Covariance matrix from correlation matrix and standard errors

calculate_prec_from_cov

Precision matrix from covariance matrix

calculate_prec_from_corrse

Precision matrix from correlation matrix and standard errors

calculate_corr_from_prec

Correlation matrix from precision matrix