get_baselines#
- pharmpy.modeling.get_baselines(model)[source]#
Baselines for each subject.
Baseline is taken to be the first row even if that has a missing value.
- Parameters:
model (Model) – Pharmpy model
- Returns:
pd.DataFrame – Dataset with the baselines
Examples
>>> from pharmpy.modeling import load_example_model, get_baselines >>> model = load_example_model("pheno") >>> get_baselines(model) TIME AMT WGT APGR DV FA1 FA2 ID 1 0.0 25.0 1.4 7.0 0.0 1.0 1.0 2 0.0 15.0 1.5 9.0 0.0 1.0 1.0 3 0.0 30.0 1.5 6.0 0.0 1.0 1.0 4 0.0 18.6 0.9 6.0 0.0 1.0 1.0 5 0.0 27.0 1.4 7.0 0.0 1.0 1.0 6 0.0 24.0 1.2 5.0 0.0 1.0 1.0 7 0.0 19.0 1.0 5.0 0.0 1.0 1.0 8 0.0 24.0 1.2 7.0 0.0 1.0 1.0 9 0.0 27.0 1.4 8.0 0.0 1.0 1.0 10 0.0 27.0 1.4 7.0 0.0 1.0 1.0 11 0.0 24.0 1.2 7.0 0.0 1.0 1.0 12 0.0 26.0 1.3 6.0 0.0 1.0 1.0 13 0.0 11.0 1.1 6.0 0.0 1.0 1.0 14 0.0 22.0 1.1 7.0 0.0 1.0 1.0 15 0.0 26.0 1.3 7.0 0.0 1.0 1.0 16 0.0 12.0 1.2 9.0 0.0 1.0 1.0 17 0.0 22.0 1.1 5.0 0.0 1.0 1.0 18 0.0 20.0 1.0 5.0 0.0 1.0 1.0 19 0.0 10.0 1.0 1.0 0.0 1.0 1.0 20 0.0 24.0 1.2 6.0 0.0 1.0 1.0 21 0.0 17.5 1.8 7.0 0.0 1.0 1.0 22 0.0 15.0 1.5 8.0 0.0 1.0 1.0 23 0.0 60.0 3.1 3.0 0.0 1.0 1.0 24 0.0 63.0 3.2 2.0 0.0 1.0 1.0 25 0.0 15.0 0.7 1.0 0.0 1.0 1.0 26 0.0 70.0 3.5 9.0 0.0 1.0 1.0 27 0.0 35.0 1.9 5.0 0.0 1.0 1.0 28 0.0 60.0 3.2 9.0 0.0 1.0 1.0 29 0.0 20.0 1.0 7.0 0.0 1.0 1.0 30 0.0 18.0 1.8 8.0 0.0 1.0 1.0 31 0.0 30.0 1.4 8.0 0.0 1.0 1.0 32 0.0 70.0 3.6 9.0 0.0 1.0 1.0 33 0.0 17.0 1.7 8.0 0.0 1.0 1.0 34 0.0 34.0 1.7 4.0 0.0 1.0 1.0 35 0.0 25.0 2.5 5.0 0.0 1.0 1.0 36 0.0 30.0 1.5 5.0 0.0 1.0 1.0 37 0.0 24.0 1.2 9.0 0.0 1.0 1.0 38 0.0 26.0 1.3 8.0 0.0 1.0 1.0 39 0.0 56.0 1.9 10.0 0.0 1.0 1.0 40 0.0 19.0 1.1 3.0 0.0 1.0 1.0 41 0.0 34.0 1.7 7.0 0.0 1.0 1.0 42 0.0 28.0 2.8 9.0 0.0 1.0 1.0 43 0.0 18.0 0.9 1.0 0.0 1.0 1.0 44 0.0 14.0 1.4 7.0 0.0 1.0 1.0 45 0.0 16.0 0.8 2.0 0.0 1.0 1.0 46 0.0 11.0 1.1 8.0 0.0 1.0 1.0 47 0.0 40.0 2.6 9.0 0.0 1.0 1.0 48 0.0 14.0 0.7 8.0 0.0 1.0 1.0 49 0.0 26.0 1.3 8.0 0.0 1.0 1.0 50 0.0 20.0 1.1 6.0 0.0 1.0 1.0 51 0.0 18.0 0.9 9.0 0.0 1.0 1.0 52 0.0 9.5 0.9 7.0 0.0 1.0 1.0 53 0.0 17.0 1.7 8.0 0.0 1.0 1.0 54 0.0 18.0 1.8 8.0 0.0 1.0 1.0 55 0.0 25.0 1.1 4.0 0.0 1.0 1.0 56 0.0 12.0 0.6 4.0 0.0 1.0 1.0 57 0.0 20.0 2.1 6.0 0.0 1.0 1.0 58 0.0 14.0 1.4 8.0 0.0 1.0 1.0 59 0.0 22.8 1.1 6.0 0.0 1.0 1.0