run_iovsearch#
- pharmpy.tools.run_iovsearch(column='OCC', list_of_parameters=None, rank_type='bic', cutoff=None, distribution='same-as-iiv', results=None, model=None, strictness='minimization_successful or (rounding_errors and sigdigs>=0.1)', E=None, **kwargs)#
Run IOVsearch tool. For more details, see IOVsearch.
- Parameters:
column (str) – Name of column in dataset to use as occasion column (default is ‘OCC’)
list_of_parameters (None or list) – List of parameters to test IOV on, if none all parameters with IIV will be tested (default)
rank_type ({‘ofv’, ‘lrt’, ‘aic’, ‘bic’, ‘mbic’}) – Which ranking type should be used. Default is BIC.
cutoff (None or float) – Cutoff for which value of the ranking type that is considered significant. Default is None (all models will be ranked)
distribution ({‘disjoint’, ‘joint’, ‘explicit’, ‘same-as-iiv’}) – Which distribution added IOVs should have (default is same-as-iiv)
results (ModelfitResults) – Results for model
model (Model) – Pharmpy model
strictness (str or None) – Strictness criteria
E (float) – Expected number of predictors (used for mBIC). Must be set when using mBI
kwargs – Arguments to pass to tool
- Returns:
IOVSearchResults – IOVSearch tool result object
Examples
>>> from pharmpy.modeling import load_example_model >>> from pharmpy.tools import run_iovsearch, load_example_modelfit_results >>> model = load_example_model("pheno") >>> results = load_example_modelfit_results("pheno") >>> run_iovsearch('OCC', results=results, model=model)