Source code for pharmpy.modeling.parameter_variability

"""
:meta private:
"""

from __future__ import annotations

import re
import warnings
from collections import Counter, defaultdict
from functools import reduce
from itertools import chain, combinations
from operator import add, mul
from typing import Literal, Optional, Union

from pharmpy.basic import Expr
from pharmpy.deps import numpy as np
from pharmpy.deps import pandas as pd
from pharmpy.deps import sympy
from pharmpy.internals.expr.parse import parse as parse_expr
from pharmpy.internals.expr.subs import subs
from pharmpy.internals.math import corr2cov, nearest_positive_semidefinite
from pharmpy.model import (
    Assignment,
    JointNormalDistribution,
    Model,
    NormalDistribution,
    Parameter,
    Parameters,
    Statements,
)

from .common import remove_unused_parameters_and_rvs
from .expressions import create_symbol, get_pd_parameters, get_pk_parameters, has_random_effect
from .help_functions import _format_input_list, _format_options, _get_etas

ADD_IOV_DISTRIBUTION = frozenset(('disjoint', 'joint', 'explicit', 'same-as-iiv'))


[docs] def add_iiv( model: Model, list_of_parameters: Union[list[str], str], expression: Union[list[str], str], operation: str = '*', initial_estimate: float = 0.09, eta_names: Optional[list[str]] = None, ): r"""Adds IIVs to :class:`pharmpy.model`. Effects that currently have templates are: - Additive (*add*) - Proportional (*prop*) - Exponential (*exp*) - Logit (*log*) - Rescaled logit (*re_log*) For all except exponential the operation input is not needed. Otherwise user specified input is supported. Initial estimates for new etas are 0.09. Assuming a statement :math:`CL = \Theta`, IIVs are added in the following ways: - Additive: :math:`CL = \Theta + \eta` - Proportional: :math:`CL = \Theta \cdot (1 + \eta)` - Exponential: :math:`CL = \Theta +/\cdot e^{\eta}` - Logit: :math:`CL = \Theta \cdot e^{\eta}/ (e^{\eta} + 1)` - Rescaled logit: :math:`CL = e^{\Phi \cdot \eta}/(1+e^{\Phi \cdot \eta})` with :math:`\Phi = log(\Theta/(1-\Theta))` Parameters ---------- model : Model Pharmpy model to add new IIVs to. list_of_parameters : str, list Name/names of parameter to add new IIVs to. expression : str, list Effect/effects on eta. Either abbreviated (see above) or custom. operation : str, list, optional Whether the new IIV should be added or multiplied (default). initial_estimate : float Value of initial estimate of parameter. Default is 0.09 eta_names : str, list, optional Custom name/names of new eta Return ------ Model Pharmpy model object Example ------- >>> from pharmpy.modeling import * >>> model = load_example_model("pheno") >>> model = remove_iiv(model, "CL") >>> model = add_iiv(model, "CL", "add") >>> model.statements.find_assignment("CL") CL = ETA_CL + TVCL See also -------- add_pk_iiv add_iov remove_iiv remove_iov """ rvs, pset, sset = ( model.random_variables, list(model.parameters), model.statements, ) list_of_parameters = _format_input_list(list_of_parameters) list_of_options = _format_options([expression, operation, eta_names], len(list_of_parameters)) expression, operation, eta_names = list_of_options if all(eta_name is None for eta_name in eta_names): eta_names = None if not all(len(opt) == len(list_of_parameters) for opt in list_of_options if opt): raise ValueError( 'The number of provided expressions and operations must either be equal ' 'to the number of parameters or equal to 1' ) for i in range(len(list_of_parameters)): omega = Expr.symbol(f'IIV_{list_of_parameters[i]}') if not eta_names: eta_name = f'ETA_{list_of_parameters[i]}' else: eta_name = eta_names[i] eta = NormalDistribution.create(eta_name, 'iiv', 0, omega) rvs = rvs + eta pset.append(Parameter(str(omega), init=initial_estimate)) index = sset.find_assignment_index(list_of_parameters[i]) if index is None: raise ValueError(f'Could not find parameter: {list_of_parameters[i]}') statement = sset[index] eta_addition = _create_template(expression[i], operation[i]) if expression[i] == "re_log": # Need to add phi as well phi = Expr.symbol(f'phi_{statement.expression}') eta_addition.apply(phi, eta.names[0]) sset = ( sset[0:index] + Assignment(phi, (statement.expression / (1 - statement.expression)).log()) + Assignment.create(statement.symbol, eta_addition.template) + sset[index + 1 :] ) else: eta_addition.apply(statement.expression, eta.names[0]) sset = ( sset[0:index] + Assignment.create(statement.symbol, eta_addition.template) + sset[index + 1 :] ) model = model.replace(random_variables=rvs, parameters=Parameters.create(pset), statements=sset) return model.update_source()
[docs] def add_iov( model: Model, occ: str, list_of_parameters: Optional[Union[list[str], str]] = None, eta_names: Optional[Union[list[str], str]] = None, distribution: Literal[tuple(ADD_IOV_DISTRIBUTION)] = 'disjoint', ): """Adds IOVs to :class:`pharmpy.model`. Initial estimate of new IOVs are 10% of the IIV eta it is based on. Parameters ---------- model : Model Pharmpy model to add new IOVs to. occ : str Name of occasion column. list_of_parameters : str, list List of names of parameters and random variables. Accepts random variable names, parameter names, or a mix of both. eta_names : str, list Custom names of new etas. Must be equal to the number of input etas times the number of categories for occasion. distribution : {'disjoint', 'joint', 'explicit', 'same-as-iiv'} The distribution that should be used for the new etas. Options are 'disjoint' for disjoint normal distributions, 'joint' for joint normal distribution, 'explicit' for an explicit mix of joint and disjoint distributions, and 'same-as-iiv' for copying the distribution of IIV etas. Return ------ Model Pharmpy model object Example ------- >>> from pharmpy.modeling import * >>> model = load_example_model("pheno") >>> model = add_iov(model, "TIME", "CL") >>> model.statements.find_assignment("CL") # doctest: +SKIP CL = ETA_CL + TVCL See also -------- add_iiv add_pk_iiv remove_iiv remove_iov """ if distribution not in ADD_IOV_DISTRIBUTION: raise ValueError(f'"{distribution}" is not a valid value for distribution') list_of_parameters = _format_input_list(list_of_parameters) if distribution == 'explicit': if list_of_parameters is None or not all( map(lambda x: isinstance(x, list), list_of_parameters) ): raise ValueError( 'distribution == "explicit" requires parameters to be given as lists of lists' ) else: if list_of_parameters is not None and not all( map(lambda x: isinstance(x, str), list_of_parameters) ): raise ValueError( 'distribution != "explicit" requires parameters to be given as lists of strings' ) if list_of_parameters is None: if distribution == 'disjoint': etas = list(map(lambda x: [x], _get_etas(model, None, include_symbols=True))) else: etas = [_get_etas(model, None, include_symbols=True)] else: if distribution == 'disjoint': list_of_parameters = list(map(lambda x: [x], list_of_parameters)) elif distribution == 'joint' or distribution == 'same-as-iiv': list_of_parameters = [list_of_parameters] if not all( map( lambda x: isinstance(x, list) and all(map(lambda y: isinstance(y, str), x)), list_of_parameters, ) ): raise ValueError('not all parameters are strings') etas = [_get_etas(model, grp, include_symbols=True) for grp in list_of_parameters] for dist, grp in zip(etas, list_of_parameters): assert len(dist) <= len(grp) categories = get_occasion_levels(model.dataset, occ) if eta_names and len(eta_names) != sum(map(len, etas)) * len(categories): raise ValueError( 'Number of given eta names is incorrect, ' f'need {sum(map(len, etas)) * len(categories)} names.' ) if len(categories) == 1: raise ValueError(f'Only one value in {occ} column.') # NOTE: This declares the ETAS and their corresponding OMEGAs if distribution == 'same-as-iiv': # NOTE: We filter existing IIV distributions for selected ETAs and then # let the explicit distribution logic handle the rest assert len(etas) == 1 etas_set = set(etas[0]) etas = [] for dist in model.random_variables: intersection = list(filter(etas_set.__contains__, dist.names)) if not intersection: continue etas.append(intersection) first_iov_name = create_symbol(model, 'IOV_', force_numbering=True).name first_iov_number = int(first_iov_name.split('_')[-1]) def eta_name(i, k): return ( eta_names[(i - 1) * len(categories) + k - 1] if eta_names else f'ETA_{iov_name(i)}_{k}' ) def omega_iov_name(i, j): return f'OMEGA_{iov_name(i)}' if i == j else f'OMEGA_{iov_name(i)}_{j}' def iov_name(i): return f'IOV_{first_iov_number + i - 1}' def etai_name(i): return f'ETAI{first_iov_number + i - 1}' rvs, pset, iovs = _add_iov_explicit( model, occ, etas, categories, iov_name, etai_name, eta_name, omega_iov_name ) model = model.replace(random_variables=rvs, parameters=Parameters.create(pset), statements=iovs) return model.update_source()
def _add_iov_explicit(model, occ, etas, categories, iov_name, etai_name, eta_name, omega_iov_name): assert all(map(bool, etas)) ordered_etas = list(chain.from_iterable(etas)) eta, count = next(iter(Counter(ordered_etas).most_common())) if count >= 2: raise ValueError(f'{eta} was given twice.') distributions = [ range(i, i + len(grp)) for i, grp in zip(reduce(lambda acc, x: acc + [acc[-1] + x], map(len, etas), [1]), etas) ] rvs, pset, sset = ( model.random_variables, list(model.parameters), model.statements, ) iovs, etais, sset = _add_iov_declare_etas( sset, occ, ordered_etas, range(1, len(ordered_etas) + 1), categories, eta_name, iov_name, etai_name, ) for dist in distributions: assert dist _add_iov_etas = _add_iov_etas_disjoint if len(dist) == 1 else _add_iov_etas_joint to_add = _add_iov_etas( rvs, pset, ordered_etas, dist, categories, omega_iov_name, eta_name, ) rvs = rvs + list(to_add) return rvs, pset, iovs + etais + sset def _add_iov_declare_etas(sset, occ, etas, indices, categories, eta_name, iov_name, etai_name): iovs, etais = [], [] for i in indices: eta = etas[i - 1] # NOTE: This declares IOV-ETA case assignments and replaces the existing # ETA with its sum with the new IOV ETA iov = Expr.symbol(iov_name(i)) expression = Expr.piecewise( *( (sympy.Symbol(eta_name(i, k)), sympy.Eq(cat, sympy.Symbol(occ))) for k, cat in enumerate(categories, 1) ) ) iovs.append(Assignment.create(iov, parse_expr(0))) iovs.append(Assignment.create(iov, expression)) etai = Expr.symbol(etai_name(i)) etais.append(Assignment.create(etai, Expr.symbol(eta) + iov)) sset = sset.subs({eta: etai}) return iovs, etais, sset def _add_iov_etas_disjoint(rvs, pset, etas, indices, categories, omega_iov_name, eta_name): _add_iov_declare_diagonal_omegas(rvs, pset, etas, indices, omega_iov_name) for i in indices: omega_iov = Expr.symbol(omega_iov_name(i, i)) for k in range(1, len(categories) + 1): yield NormalDistribution.create(eta_name(i, k), 'iov', 0, omega_iov) def _add_iov_etas_joint(rvs, pset, etas, indices, categories, omega_iov_name, eta_name): _add_iov_declare_diagonal_omegas(rvs, pset, etas, indices, omega_iov_name) # NOTE: Declare off-diagonal OMEGAs for i, j in combinations(indices, r=2): omega_iov = Expr.symbol(omega_iov_name(i, j)) omega_iiv = rvs.get_covariance(etas[i - 1], etas[j - 1]) paramset = Parameters.create(pset) # FIXME! init = paramset[omega_iiv].init * 0.1 if omega_iiv != 0 and omega_iiv in paramset else 0.001 pset.append(Parameter(str(omega_iov), init=init)) mu = [0] * len(indices) sigma = [[Expr.symbol(omega_iov_name(min(i, j), max(i, j))) for i in indices] for j in indices] for k in range(1, len(categories) + 1): names = list(map(lambda i: eta_name(i, k), indices)) yield JointNormalDistribution.create(names, 'iov', mu, sigma) def _add_iov_declare_diagonal_omegas(rvs, pset, etas, indices, omega_iov_name): for i in indices: eta = etas[i - 1] omega_iiv = rvs[eta].get_variance(eta) omega_iov = Expr.symbol(omega_iov_name(i, i)) paramset = Parameters.create(pset) # FIXME! init = paramset[omega_iiv].init * 0.1 if omega_iiv in paramset else 0.01 pset.append(Parameter(str(omega_iov), init=init))
[docs] def add_pk_iiv(model: Model, initial_estimate: float = 0.09): """Adds IIVs to all PK parameters in :class:`pharmpy.model`. Will add exponential IIVs to all parameters that are included in the ODE. Parameters ---------- model : Model Pharmpy model to add new IIVs to. initial_estimate : float Value of initial estimate of parameter. Default is 0.09 Return ------ Model Pharmpy model object Example ------- >>> from pharmpy.modeling import * >>> model = load_example_model("pheno") >>> model = set_first_order_absorption(model) >>> model.statements.find_assignment("MAT") MAT = POP_MAT >>> model = add_pk_iiv(model) >>> model.statements.find_assignment("MAT") ETA_MAT MAT = POP_MAT⋅ℯ See also -------- add_iiv add_iov remove_iiv remove_iov """ params_to_add_etas = [ param for param in get_pk_parameters(model) if not has_random_effect(model, param, 'iiv') ] if params_to_add_etas: model = add_iiv(model, params_to_add_etas, 'exp', initial_estimate=initial_estimate) return model.update_source()
[docs] def add_pd_iiv(model: Model, initial_estimate: float = 0.09): """Adds IIVs to all PD parameters in :class:`pharmpy.model`. Parameters ---------- model : Model Pharmpy model to add new IIVs to. initial_estimate : float Value of initial estimate of parameter. Default is 0.09 Return ------ Model Pharmpy model object Example ------- >>> from pharmpy.modeling import * >>> model = load_example_model("pheno") >>> model = set_direct_effect(model, 'emax') >>> model.statements.find_assignment("EC_50") EC₅₀ = POP_EC_50 >>> model = add_pd_iiv(model) >>> model.statements.find_assignment("EC_50") ETA_EC_50 EC₅₀ = POP_EC_50⋅ℯ See also -------- add_iiv add_iov remove_iiv remove_iov """ params_to_add_etas = [ param for param in get_pd_parameters(model) if not has_random_effect(model, param, 'iiv') ] if params_to_add_etas: model = add_iiv(model, params_to_add_etas, 'exp', initial_estimate=initial_estimate) return model.update_source()
def _create_template(expression, operation): operation_func = _get_operation_func(operation) if expression == 'add': return EtaAddition.additive() elif expression == 'prop': return EtaAddition.proportional() elif expression == 'exp': return EtaAddition.exponential(operation_func) elif expression == 'log': return EtaAddition.logit() elif expression == 're_log': return EtaAddition.re_logit() else: expression = parse_expr(f'original {operation} {expression}') return EtaAddition(expression) def _get_operation_func(operation): """Gets sympy operation based on string""" if operation == '*': return mul elif operation == '+': return add def get_occasion_levels(df, occ): levels = df[occ].unique() return _canonicalize_categories(levels) def _canonicalize_categories(categories): return sorted(map(_canonicalize_category, categories)) def _canonicalize_category(c: Union[int, float, str]): if isinstance(c, int): return c if isinstance(c, float): return int(c) if isinstance(c, (np.int32, np.int64)): return int(c) if isinstance(c, str): return _canonicalize_category(float(c) if '.' in c else int(c)) raise ValueError(f'Cannot canonicalize category "{type(c)}({c})"') class EtaAddition: """ Eta addition consisting of expression. Attributes ---------- template Expression consisting of original statement +/* new eta with effect. :meta private: """ def __init__(self, template): self.template = template def apply(self, original, eta): self.template = subs(self.template, {'original': original, 'eta_new': eta}) @classmethod def additive(cls): template = sympy.Symbol('original') + sympy.Symbol('eta_new') return cls(template) @classmethod def proportional(cls): template = sympy.Symbol('original') * (1 + sympy.Symbol('eta_new')) return cls(template) @classmethod def exponential(cls, operation): template = operation(sympy.Symbol('original'), sympy.exp(sympy.Symbol('eta_new'))) return cls(template) @classmethod def logit(cls): template = sympy.Symbol('original') * ( sympy.exp(sympy.Symbol('eta_new')) / (1 + sympy.exp(sympy.Symbol('eta_new'))) ) return cls(template) @classmethod def re_logit(cls): template = sympy.exp(sympy.Symbol('eta_new') * sympy.Symbol('original')) / ( 1 + sympy.exp(sympy.Symbol('eta_new') * sympy.Symbol('original')) ) return cls(template)
[docs] def remove_iiv(model: Model, to_remove: Optional[Union[list[str], str]] = None): """ Removes all IIV etas given a list with eta names and/or parameter names. Parameters ---------- model : Model Pharmpy model to create block effect on. to_remove : str, list Name/names of etas and/or name/names of individual parameters to remove. If None, all etas that are IIVs will be removed. None is default. Return ------ Model Pharmpy model object Examples -------- >>> from pharmpy.modeling import * >>> model = load_example_model("pheno") >>> model = remove_iiv(model) >>> model.statements.find_assignment("CL") CL = TVCL >>> model = load_example_model("pheno") >>> model = remove_iiv(model, "VC") >>> model.statements.find_assignment("VC") VC = TVV See also -------- remove_iov add_iiv add_iov add_pk_iiv """ rvs, sset = model.random_variables, model.statements to_remove = _format_input_list(to_remove) etas = _get_etas(model, to_remove, include_symbols=True) for eta in etas: eta_sym = Expr(eta) new = [] for s in sset: if eta_sym in s.free_symbols: expr = sympy.sympify(s.expression).expand() if len(expr.args) == 0: new_s = s.subs({Expr(expr): 0}) elif len(expr.args) == 1 and expr.fun == sympy.exp: new_s = s.subs({eta_sym: 0}) else: expr_subs = expr for i in range(len(expr.args)): if eta_sym in Expr(expr.args[i]).free_symbols: if expr.func == sympy.Mul: expr_subs = expr_subs.subs({expr.args[i]: 1}) elif expr.func == sympy.Add: if len(expr.args[i].args) == 1 and expr.args[i].func == sympy.exp: expr_subs = expr_subs.subs({(expr.args[i]): 0}) else: expr_subs = expr_subs.subs({eta_sym: 0}) new_s = Assignment.create(s.symbol, Expr(expr_subs)) else: new_s = s new.append(new_s) sset = Statements.create(new) keep = [name for name in model.random_variables.names if name not in etas] model = model.replace(random_variables=rvs[keep], statements=sset) model = remove_unused_parameters_and_rvs(model) model = model.update_source() return model
[docs] def remove_iov(model: Model, to_remove: Optional[Union[list[str], str]] = None): """Removes all IOV etas given a list with eta names. Parameters ---------- model : Model Pharmpy model to remove IOV from. to_remove : str, list Name/names of IOV etas to remove, e.g. 'ETA_IOV_1_1'. If None, all etas that are IOVs will be removed. None is default. Return ------ Model Pharmpy model object Example ------- >>> from pharmpy.modeling import * >>> model = load_example_model("pheno") >>> model = remove_iov(model) See also -------- add_iiv add_iov remove_iiv add_pk_iiv """ rvs, sset = model.random_variables, model.statements etas = _get_iov_etas(model, to_remove) if not etas: warnings.warn('No IOVs present') return model keep = [name for name in rvs.names if name not in etas] d = {Expr.symbol(name): 0 for name in etas} model = model.replace(statements=sset.subs(d), random_variables=rvs[keep]) model = remove_unused_parameters_and_rvs(model) return model.update_source()
def _get_iov_etas(model: Model, list_of_etas): list_of_etas = _format_input_list(list_of_etas) rvs = model.random_variables if list_of_etas is None: return set(rvs.iov.names) # NOTE: Include all directly referenced ETAs direct_etas = set(list_of_etas) # NOTE: Include all IOV ETAs that are identically distributed to the ones # directly referenced indirect_etas = set() for group in _get_iov_groups(model): if not direct_etas.isdisjoint(group): indirect_etas.update(group) return direct_etas | indirect_etas def _get_iov_groups(model: Model): iovs = model.random_variables.iov same = defaultdict(set) for dist in iovs: for i, name in enumerate(dist.names): key = (i, dist.variance) same[key].add(name) return same.values()
[docs] def transform_etas_boxcox(model: Model, list_of_etas: Optional[Union[list[str], str]] = None): """Applies a boxcox transformation to selected etas Initial estimate for lambda is 0.1 with bounds (-3, 3). Parameters ---------- model : Model Pharmpy model to apply boxcox transformation to. list_of_etas : str, list Name/names of etas to transform. If None, all etas will be transformed (default). Return ------ Model Pharmpy model object Examples -------- >>> from pharmpy.modeling import * >>> model = load_example_model("pheno") >>> model = transform_etas_boxcox(model, ["ETA_CL"]) >>> model.statements.before_odes.full_expression("CL") POP_CL*WGT*exp((exp(ETA_CL)**lambda1 - 1)/lambda1) See also -------- transform_etas_tdist transform_etas_john_draper """ list_of_etas = _format_input_list(list_of_etas) etas = _get_etas(model, list_of_etas) eta_transformation = EtaTransformation.boxcox(len(etas)) model = _transform_etas(model, eta_transformation, etas) return model.update_source()
[docs] def transform_etas_tdist(model: Model, list_of_etas: Optional[Union[list[str], str]] = None): """Applies a t-distribution transformation to selected etas Initial estimate for degrees of freedom is 80 with bounds (3, 100). Parameters ---------- model : Model Pharmpy model to apply t distribution transformation to. list_of_etas : str, list Name/names of etas to transform. If None, all etas will be transformed (default). Return ------ Model Pharmpy model object Examples -------- >>> from pharmpy.modeling import * >>> model = load_example_model("pheno") >>> model = transform_etas_tdist(model, ["ETA_CL"]) >>> model.statements.before_odes.full_expression("CL") # doctest: +ELLIPSIS POP_CL*WGT*exp(ETA_CL*(1 + (ETA_CL**2 + 1)/(4*df1) + (5*ETA_CL**4 + 16*ETA_CL**2... See also -------- transform_etas_boxcox transform_etas_john_draper """ list_of_etas = _format_input_list(list_of_etas) etas = _get_etas(model, list_of_etas) eta_transformation = EtaTransformation.tdist(len(etas)) model = _transform_etas(model, eta_transformation, etas) return model.update_source()
[docs] def transform_etas_john_draper(model: Model, list_of_etas: Optional[Union[list[str], str]] = None): """Applies a John Draper transformation [1]_ to spelected etas Initial estimate for lambda is 0.1 with bounds (-3, 3). .. [1] John, J., Draper, N. (1980). An Alternative Family of Transformations. Journal of the Royal Statistical Society. Series C (Applied Statistics), 29(2), 190-197. doi:10.2307/2986305 Parameters ---------- model : Model Pharmpy model to apply John Draper transformation to. list_of_etas : str, list Name/names of etas to transform. If None, all etas will be transformed (default). Return ------ Model Pharmpy model object Examples -------- >>> from pharmpy.modeling import * >>> model = load_example_model("pheno") >>> model = transform_etas_john_draper(model, ["ETA_CL"]) >>> model.statements.before_odes.full_expression("CL") POP_CL*WGT*exp(((Abs(ETA_CL) + 1)**lambda1 - 1)*sign(ETA_CL)/lambda1) See also -------- transform_etas_boxcox transform_etas_tdist """ list_of_etas = _format_input_list(list_of_etas) etas = _get_etas(model, list_of_etas) eta_transformation = EtaTransformation.john_draper(len(etas)) model = _transform_etas(model, eta_transformation, etas) return model.update_source()
def _transform_etas(model, transformation, etas): etas_assignment, etas_subs = _create_new_etas(etas, transformation.name) parameters, thetas = _create_new_thetas(model, transformation.theta_type, len(etas)) transformation.apply(etas_assignment, thetas) statements_new = transformation.assignments sset = model.statements.subs(etas_subs) model = model.replace(parameters=parameters, statements=statements_new + sset) return model def _create_new_etas(etas_original, transformation): etas_subs = {} etas_assignment = {} if transformation == 'boxcox': eta_new = 'etab' elif transformation == 'tdist': eta_new = 'etat' elif transformation == 'johndraper': eta_new = 'etad' else: eta_new = 'etan' for i, eta in enumerate(etas_original, 1): etas_subs[sympy.Symbol(eta)] = sympy.Symbol(f'{eta_new.upper()}{i}') etas_assignment[sympy.Symbol(f'{eta_new}{i}')] = sympy.Symbol(f'{eta_new.upper()}{i}') etas_assignment[sympy.Symbol(f'eta{i}')] = sympy.Symbol(eta) return etas_assignment, etas_subs def _create_new_thetas(model, transformation, no_of_thetas): pset = list(model.parameters) thetas = {} theta_name = str(create_symbol(model, stem=transformation, force_numbering=True)) param_settings = (0.01, -3, 3) if transformation == 'lambda' else (80, 3, 100) if no_of_thetas == 1: pset.append(Parameter(theta_name, *param_settings)) thetas['theta1'] = theta_name else: theta_no = int(re.findall(r'\d', theta_name)[0]) for i in range(1, no_of_thetas + 1): pset.append(Parameter(theta_name, 0.01, -3, 3)) thetas[f'theta{i}'] = theta_name theta_name = f'{transformation}{theta_no + i}' return Parameters.create(pset), thetas class EtaTransformation: def __init__(self, name, assignments, theta_type): self.name = name self.assignments = assignments self.theta_type = theta_type def apply(self, etas, thetas): for i, assignment in enumerate(self.assignments): self.assignments[i] = assignment.subs(etas).subs(thetas) @classmethod def boxcox(cls, no_of_etas): assignments = [] for i in range(1, no_of_etas + 1): symbol = Expr.symbol(f'etab{i}') expression = (Expr.exp(Expr.symbol(f'eta{i}')) ** Expr.symbol(f'theta{i}') - 1) / ( Expr.symbol(f'theta{i}') ) assignment = Assignment.create(symbol, expression) assignments.append(assignment) return cls('boxcox', assignments, 'lambda') @classmethod def tdist(cls, no_of_etas): assignments = [] for i in range(1, no_of_etas + 1): symbol = Expr.symbol(f'etat{i}') eta = Expr.symbol(f'eta{i}') theta = Expr.symbol(f'theta{i}') num_1 = eta**2 + 1 denom_1 = 4 * theta num_2 = (5 * eta**4) + (16 * eta**2 + 3) denom_2 = 96 * theta**2 num_3 = (3 * eta**6) + (19 * eta**4) + (17 * eta**2) - 15 denom_3 = 384 * theta**3 expression = eta * (1 + (num_1 / denom_1) + (num_2 / denom_2) + (num_3 / denom_3)) assignment = Assignment.create(symbol, expression) assignments.append(assignment) return cls('tdist', assignments, 'df') @classmethod def john_draper(cls, no_of_etas): assignments = [] for i in range(1, no_of_etas + 1): symbol = Expr.symbol(f'etad{i}') eta = Expr.symbol(f'eta{i}') theta = Expr.symbol(f'theta{i}') expression = Expr.sign(eta) * (((abs(eta) + 1) ** theta - 1) / theta) assignment = Assignment.create(symbol, expression) assignments.append(assignment) return cls('johndraper', assignments, 'lambda') def __str__(self): return str(self.assignments)
[docs] def create_joint_distribution( model: Model, rvs: Optional[list[str]] = None, individual_estimates: Optional[pd.DataFrame] = None, ): """ Combines some or all etas into a joint distribution. The etas must be IIVs and cannot be fixed. Initial estimates for covariance between the etas is dependent on whether the model has results from a previous run. In that case, the correlation will be calculated from individual estimates, otherwise correlation will be set to 10%. Parameters ---------- model : Model Pharmpy model rvs : list Sequence of etas or names of etas to combine. If None, all etas that are IIVs and non-fixed will be used (full block). None is default. individual_estimates : pd.DataFrame Optional individual estimates to use for calculation of initial estimates Return ------ Model Pharmpy model object Examples -------- >>> from pharmpy.modeling import load_example_model, create_joint_distribution >>> model = load_example_model("pheno") >>> model.random_variables.etas ETA_CL ~ N(0, IIV_CL) ETA_VC ~ N(0, IIV_VC) >>> model = create_joint_distribution(model, ['ETA_CL', 'ETA_VC']) >>> model.random_variables.etas ⎡ETA_CL⎤ ⎧⎡0⎤ ⎡ IIV_CL IIV_CL_IIV_VC⎤⎫ ⎢ ⎥ ~ N⎪⎢ ⎥, ⎢ ⎥⎪ ⎣ETA_VC⎦ ⎩⎣0⎦ ⎣IIV_CL_IIV_VC IIV_VC ⎦⎭ See also -------- split_joint_distribution : split etas into separate distributions """ all_rvs = model.random_variables if rvs is None: rvs = [] iiv_rvs = model.random_variables.iiv for rv in iiv_rvs: for name in rv.parameter_names: if model.parameters[name].fix: break else: rvs.extend(rv.names) else: for name in rvs: if name in all_rvs and all_rvs[name].level == 'IOV': raise ValueError( f'{name} describes IOV: Joining IOV random variables is currently not supported' ) if len(rvs) == 1: raise ValueError('At least two random variables are needed') sset = model.statements paramnames = [] for rv in rvs: parameter_names = '_'.join( [s.symbol.name for s in sset if Expr.symbol(rv) in s.rhs_symbols] ) paramnames.append(parameter_names) all_rvs, cov_to_params = all_rvs.join( rvs, name_template='IIV_{}_IIV_{}', param_names=paramnames ) pset_new = model.parameters for cov_name, param_names in cov_to_params.items(): parent1, parent2 = model.parameters[param_names[0]], model.parameters[param_names[1]] covariance_init = _choose_cov_param_init( model, individual_estimates, all_rvs, parent1, parent2 ) param_new = Parameter(cov_name, covariance_init) pset_new += param_new model = model.replace(parameters=Parameters.create(pset_new), random_variables=all_rvs) model = remove_unused_parameters_and_rvs(model) return model
[docs] def split_joint_distribution(model: Model, rvs: Optional[Union[list[str], str]] = None): """ Splits etas following a joint distribution into separate distributions. Parameters ---------- model : Model Pharmpy model rvs : str, list Name/names of etas to separate. If None, all etas that are IIVs and non-fixed will become single. None is default. Return ------ Model Pharmpy model object Examples -------- >>> from pharmpy.modeling import * >>> model = load_example_model("pheno") >>> model = create_joint_distribution(model, ['ETA_CL', 'ETA_VC']) >>> model.random_variables.etas ⎡ETA_CL⎤ ⎧⎡0⎤ ⎡ IIV_CL IIV_CL_IIV_VC⎤⎫ ⎢ ⎥ ~ N⎪⎢ ⎥, ⎢ ⎥⎪ ⎣ETA_VC⎦ ⎩⎣0⎦ ⎣IIV_CL_IIV_VC IIV_VC ⎦⎭ >>> model = split_joint_distribution(model, ['ETA_CL', 'ETA_VC']) >>> model.random_variables.etas ETA_CL ~ N(0, IIV_CL) ETA_VC ~ N(0, IIV_VC) See also -------- create_joint_distribution : combine etas into a join distribution """ all_rvs = model.random_variables names = _get_etas(model, rvs) new_rvs = all_rvs.unjoin(names) parameters_before = all_rvs.parameter_names parameters_after = new_rvs.parameter_names removed_parameters = set(parameters_before) - set(parameters_after) new_params = Parameters( tuple([p for p in model.parameters if p.name not in removed_parameters]) ) model = model.replace(random_variables=new_rvs, parameters=new_params).update_source() return model
def _choose_cov_param_init(model, individual_estimates, rvs, parent1, parent2): etas = [] for name in rvs.names: if rvs[name].get_variance(name).name in (parent1.name, parent2.name): etas.append(name) sd = np.array([np.sqrt(parent1.init), np.sqrt(parent2.init)]) init_default = round(0.1 * sd[0] * sd[1], 7) last_estimation_step = [est for est in model.execution_steps if not est.evaluation][-1] if last_estimation_step.method == 'FO': return init_default elif individual_estimates is not None: try: ie = individual_estimates if not all(eta in ie.columns for eta in etas): return init_default except KeyError: return init_default # NOTE: Use pd.corr() and not pd.cov(). SD is chosen from the final estimates, if cov is used # it will be calculated from the EBEs. eta_corr = ie[etas].corr() if eta_corr.isnull().values.any(): warnings.warn( f'Correlation of individual estimates between {parent1.name} and ' f'{parent2.name} is NaN, returning default initial estimate' ) return init_default cov = corr2cov(eta_corr.to_numpy(), sd) cov[cov == 0] = 0.0001 cov = nearest_positive_semidefinite(cov) init_cov = cov[1][0] return round(init_cov, 7) else: return init_default
[docs] def update_initial_individual_estimates( model: Model, individual_estimates: pd.Series, force: bool = True ): """Update initial individual estimates for a model Updates initial individual estimates for a model. Parameters ---------- model : Model Pharmpy model to update initial estimates individual_estimates : pd.DataFrame Individual estimates to use force : bool Set to False to only update if the model had initial individual estimates before Returns ------- Model Pharmpy model object Example ------- >>> from pharmpy.modeling import load_example_model, update_initial_individual_estimates >>> from pharmpy.tools import load_example_modelfit_results >>> model = load_example_model("pheno") >>> results = load_example_modelfit_results("pheno") >>> ie = results.individual_estimates >>> model = update_initial_individual_estimates(model, ie) """ if not force and model.initial_individual_estimates is None: return model model = model.replace(initial_individual_estimates=individual_estimates) return model.update_source()