rank_models#
- pharmpy.modeling.rank_models(base_model, models, errors_allowed=None, rank_type='ofv', cutoff=None, bic_type='mixed') DataFrame [source]#
Ranks a list of models
Ranks a list of models with a given ranking function
- Parameters:
base_model (Model) – Base model to compare to
models (list) – List of models
errors_allowed (list or None) – List of errors that are allowed for ranking. Currently available is: rounding_errors and maxevals_exceeded. Default is None
rank_type (str) – Name of ranking type. Available options are ‘ofv’, ‘aic’, ‘bic’, ‘lrt’ (OFV with LRT)
cutoff (float or None) – Value to use as cutoff. If using LRT, cutoff denotes p-value. Default is None
bic_type (str) – Type of BIC to calculate. Default is the mixed effects.
- Returns:
pd.DataFrame – DataFrame of the ranked models
Examples
>>> from pharmpy.modeling import load_example_model, summarize_modelfit_results >>> model_1 = load_example_model("pheno") >>> model_2 = load_example_model("pheno_linear") >>> rank_models(model_1, [model_2], ... errors_allowed=['rounding_errors'], ... rank_type='lrt')