calculate_inf_from_corrse#
- pharmpy.modeling.calculate_inf_from_corrse(corr, se)[source]#
Calculate information matrix from a correlation matrix and standard errors
- Parameters:
corr (pd.DataFrame) – Correlation matrix
se (pd.Series) – Standard errors
- Returns:
pd.DataFrame – Information matrix
Examples
>>> from pharmpy.modeling import load_example_model, calculate_inf_from_corrse >>> model = load_example_model("pheno") >>> corr = model.modelfit_results.correlation_matrix >>> se = model.modelfit_results.standard_errors >>> corr PTVCL PTVV THETA_3 IVCL IVV SIGMA_1_1 PTVCL 1.000000 0.007099 -0.094640 -0.388059 0.097981 0.170820 PTVV 0.007099 1.000000 -0.356899 0.138062 0.356662 0.238441 THETA_3 -0.094640 -0.356899 1.000000 -0.096515 -0.062991 0.153616 IVCL -0.388059 0.138062 -0.096515 1.000000 -0.185111 0.159170 IVV 0.097981 0.356662 -0.062991 -0.185111 1.000000 -0.027495 SIGMA_1_1 0.170820 0.238441 0.153616 0.159170 -0.027495 1.000000 >>> calculate_inf_from_corrse(corr, se) PTVCL PTVV THETA_3 IVCL IVV SIGMA_1_1 PTVCL 2.995565e+07 22660.041788 16057.848052 203511.410335 -39474.240358 -820116.179011 PTVV 2.266004e+04 2129.908225 260.176399 -375.266263 -2800.818557 -7718.757955 THETA_3 1.605785e+04 260.176399 187.038825 177.207512 -205.808434 -2225.144772 IVCL 2.035114e+05 -375.266263 177.207512 7527.518562 2462.972906 -9977.457873 IVV -3.947424e+04 -2800.818557 -205.808434 2462.972906 22343.197906 9370.736254 SIGMA_1_1 -8.201162e+05 -7718.757955 -2225.144772 -9977.457873 9370.736254 249846.006431
See also
calculate_se_from_cov
Standard errors from covariance matrix
calculate_se_from_inf
Standard errors from information matrix
calculate_corr_from_cov
Correlation matrix from covariance matrix
calculate_cov_from_inf
Covariance matrix from information matrix
calculate_cov_from_corrse
Covariance matrix from correlation matrix and standard errors
calculate_inf_from_cov
Information matrix from covariance matrix
calculate_corr_from_inf
Correlation matrix from information matrix