VPC#
Create a visual predicitive check plot.
Running#
The VPC tool is available both in Pharmpy/pharmr and from the command line.
from pharmpy.modeling import read_model
from pharmpy.tools import read_modelfit_results, run_vpc
model = read_model('path/to/model')
model_results = read_modelfit_results('path/to/model')
res = run_vpc(model=model, results=model_results, samples=300)
model <- read_model('path/to/model')
model_results <- read_modelfit_results('path/to/model')
res <- run_vpc(model=model, results=model_results, samples=300)
Example of running VPC from the command line:
pharmpy run vpc run1.mod --samples=300
Arguments#
Mandatory#
Argument  | 
Description  | 
|---|---|
  | 
Start model  | 
  | 
ModelfitResults for the start model  | 
  | 
Number of simulation samples. Minimum 20  | 
  | 
Name of column to stratify on.  | 
The VPC results#
The results object contains the VPC plot.