FREM#
Pharmpy handles the postprocessing, plotting and creation of model_3b of the PsN FREM [Yngman] tool.
The FREM postprocessing and results#
The postprocessing starts after estimating the parameters
where
and
Covariate effects#
The effects of each covariate on each parameter is calculated with uncertainty and summarized in the covariate_effects
table.
p5 | mean | p95 | |||
---|---|---|---|---|---|
parameter | covariate | condition | |||
CL | APGR | 5th | 0.630859 | 0.868770 | 1.176754 |
95th | 0.925602 | 1.082310 | 1.244607 | ||
WGT | 5th | 0.569077 | 0.600360 | 0.632538 | |
95th | 2.532478 | 2.824355 | 3.138312 | ||
V | APGR | 5th | 0.577861 | 0.761430 | 0.991915 |
95th | 1.003863 | 1.148763 | 1.297579 | ||
WGT | 5th | 0.600771 | 0.631260 | 0.661025 | |
95th | 2.315965 | 2.549669 | 2.811532 |
The effects are given as fractions where 1 means no effect and are calculated conditioned on the 5th and 95th percentile of the covariate values respectively.
Assume that the estimated parameter vector is joint normally distributed with mean vector
If the covariate etas were scaled in the FREM model the scaling needs to be applied to all
where
Do for each sample:
For each covariate
where
For each parameter and covariate calculate the mean, 5:th and 95:th percentile over all conditional parameter means. These are the covariate effects and their uncertainties. I.e. the conditional mean of the parameter given in turn the 5th and the 95th percentile of the covariate data. Since we currently assume log-normally distributed individual parameters each mean is exponentiated.
The covariate effect plots give the covariate effects in percent with uncertainty for each parameter and covariate in turn. The red figures are the 5th and 95th percentile covariate values.
Parameter covariate coefficients#
The parameter covariate coefficients for each covariate separately and for all taken together are available in coefficients
. The definition for one coefficient is
Cov(Par, Covariate) / Var(Covariate) and generalized for all together by the matrix
APGR | WGT | ||
---|---|---|---|
condition | parameter | ||
all | CL | -0.020503 | 0.628814 |
V | 0.009309 | 0.544459 | |
each | CL | 0.026950 | 0.613127 |
V | 0.050396 | 0.551581 |
Individual covariate effects#
The combined effects of all covariates on the parameters of each individual is calculated with uncertainty and summarized in the individual_effects
table.
observed | p5 | p95 | ||
---|---|---|---|---|
ID | parameter | |||
1.0 | CL | 0.913307 | 0.899565 | 0.923297 |
V | 0.939015 | 0.926632 | 0.948404 | |
2.0 | CL | 0.933506 | 0.894967 | 0.970755 |
V | 1.010192 | 0.973823 | 1.047109 | |
3.0 | CL | 0.992728 | 0.986142 | 0.999404 |
... | ... | ... | ... | ... |
57.0 | V | 1.361911 | 1.322628 | 1.418737 |
58.0 | CL | 0.894772 | 0.868658 | 0.917333 |
V | 0.947797 | 0.923656 | 0.969732 | |
59.0 | CL | 0.771958 | 0.748072 | 0.790423 |
V | 0.790120 | 0.768277 | 0.806911 |
118 rows × 3 columns
The conditional distribution as above is calculated for the estimated parameters (observed in the table) and the samples (that gives p5 and p95). The same
The plot shows the individuals with the lowest and the highest percentual covariate effect and the uncertainty.
Unexplained variability#
The unexplained variability is calculated and summarized in the unexplained_variability
table.
sd_observed | sd_5th | sd_95th | ||
---|---|---|---|---|
parameter | covariate | |||
CL | none | 0.469535 | 0.359934 | 0.547612 |
APGR | 0.465490 | 0.352335 | 0.538174 | |
WGT | 0.165502 | 0.141580 | 0.190726 | |
all | 0.159149 | 0.134989 | 0.183613 | |
V | none | 0.420471 | 0.327104 | 0.490419 |
APGR | 0.404440 | 0.306148 | 0.467046 | |
WGT | 0.143317 | 0.122348 | 0.166012 | |
all | 0.141826 | 0.120282 | 0.163610 |
For each sample the conditional distribution is calculated given no covariates, each covariate in turn and all covariates at the same time. The variability will be given by the conditional covariance matrix that can be calculated as:
The presented results are the 5th and 95th percetiles of the standard deviations of the parameters from
The plot display the original unexplained variability with the uncertainty for all parameter and covariate combinations.
All variability parameters given the estimated parameters conditioned on each covariate in turn can be found in parameter_variability
.
CL | V | ||
---|---|---|---|
condition | parameter | ||
all | CL | 0.025328 | 0.022571 |
V | 0.022571 | 0.020115 | |
APGR | CL | 0.216681 | 0.188254 |
V | 0.188254 | 0.163572 | |
WGT | CL | 0.027391 | 0.021634 |
V | 0.021634 | 0.020540 |
Parameter estimates#
The parameter initial estimates and final estimates of the base model (model_1), all intermediate models and the FREM model (model_4) are tabled in parameter_inits_and_estimates
.
TVCL | TVV | IVCL | OMEGA(2,1) | IVV | OMEGA(3,1) | OMEGA(3,2) | BSV_APGR | OMEGA(4,1) | OMEGA(4,2) | OMEGA(4,3) | BSV_WGT | SIGMA(1,1) | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
model | type | |||||||||||||
model_1 | init | 0.004693 | 1.00916 | 0.030963 | NaN | 0.031128 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 0.013241 |
estimate | 0.005818 | 1.44555 | 0.111053 | NaN | 0.201526 | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 0.016418 | |
model_2 | init | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 1.000000 | NaN | NaN | 0.244579 | 1.000000 | NaN |
estimate | NaN | NaN | NaN | NaN | NaN | NaN | NaN | 1.000000 | NaN | NaN | 0.244579 | 1.000000 | NaN | |
model_3 | init | NaN | NaN | 0.115195 | 0.007066 | 0.209016 | -0.010583 | 0.107027 | 1.000008 | 0.171529 | 0.404278 | 0.244448 | 1.002173 | NaN |
estimate | NaN | NaN | 0.115195 | 0.007066 | 0.209016 | -0.010583 | 0.107027 | 1.000010 | 0.171529 | 0.404278 | 0.244448 | 1.002170 | NaN | |
model_3b | init | 0.005818 | 1.44555 | 0.125999 | 0.020191 | 0.224959 | -0.012042 | 0.115427 | 1.000032 | 0.208475 | 0.415588 | 0.244080 | 1.007763 | 0.016418 |
estimate | 0.005818 | 1.44555 | 0.126000 | 0.020191 | 0.224959 | -0.012042 | 0.115427 | 1.000030 | 0.208475 | 0.415588 | 0.244080 | 1.007760 | 0.016418 | |
model_4 | init | 0.005818 | 1.44555 | 0.126000 | 0.020191 | 0.224959 | -0.012042 | 0.115427 | 1.000030 | 0.208475 | 0.415588 | 0.244080 | 1.007760 | 0.016418 |
estimate | 0.007084 | 1.38635 | 0.220463 | 0.195326 | 0.176796 | 0.062712 | 0.117271 | 1.039930 | 0.446939 | 0.402075 | 0.249237 | 1.034610 | 0.015250 |
Relative difference between of the base model parameters estimates and the final model parameter estimates are calculated in base_parameter_change
.
relative_change | |
---|---|
TVCL | 21.773218 |
TVV | -4.095327 |
IVCL | 98.520526 |
IVV | -12.271369 |
SIGMA(1,1) | -7.110618 |
OFV#
OFV of the base model, all intermediate models and the final FREM model are collected into ofv
.
ofv | |
---|---|
model_name | |
model_1 | 730.894727 |
model_2 | 896.974324 |
model_3 | 868.657803 |
model_3b | 852.803483 |
model_4 | 753.302743 |
Estimated covariate values#
The FREM model also gives an estimate of the covariate values themselves. Ideally these values should be close to the ones in the dataset. Summary statistics for the estimated
covariate values are put into estimated_covariates
.
mean | stdev | |
---|---|---|
APGR | 6.423728 | 2.237640 |
WGT | 1.525424 | 0.704565 |
References#
Yngman G, Nyberg HB, Nyberg J, Jonsson EN, Karlsson MO. An introduction to the full random effects model. CPT Pharmacometrics Syst Pharmacol. 2021;00:1– 12. https://doi.org/10.1002/psp4.12741