Case deletion diagnostics#
Pharmpy currently creates results after a PsN cdd run.
The cdd results#
Case results#
The case_results
table contains the different results and metrics for each case.
cook_score | jackknife_cook_score | delta_ofv | dofv_influential | covariance_ratio | skipped_individuals | |
---|---|---|---|---|---|---|
1 | 0.130159 | 0.121389 | 0.015207 | False | 1.050505 | [1] |
2 | 0.348263 | 0.336159 | 0.144045 | False | 0.963884 | [2] |
3 | 0.192433 | 0.181125 | 0.031030 | False | 1.058896 | [3] |
4 | 0.163095 | 0.155901 | 0.026142 | False | 1.087449 | [4] |
5 | 0.422651 | 0.404915 | 0.190732 | False | 0.985403 | [5] |
6 | 0.374312 | 0.343311 | 0.097063 | False | 1.029066 | [6] |
7 | 0.169869 | 0.163883 | 0.026223 | False | 1.101636 | [7] |
8 | 0.263865 | 0.254943 | 0.058123 | False | 1.086424 | [8] |
9 | 0.757098 | 0.673587 | 0.477910 | False | 1.017369 | [9] |
10 | 0.150161 | 0.144191 | 0.023623 | False | 1.094799 | [10] |
11 | 0.361646 | 0.352901 | 0.217902 | False | 0.849310 | [11] |
12 | 0.255533 | 0.215005 | 0.035375 | False | 1.121111 | [12] |
13 | 0.191848 | 0.187019 | 0.038199 | False | 1.049151 | [13] |
14 | 0.376365 | 0.337975 | 0.096680 | False | 1.096456 | [14] |
15 | 0.142806 | 0.137340 | 0.014709 | False | 1.070088 | [15] |
16 | 0.193393 | 0.179744 | 0.031711 | False | 1.040691 | [16] |
17 | 0.131746 | 0.122842 | 0.020637 | False | 1.065881 | [17] |
18 | 1.176644 | 0.932149 | 1.036787 | False | 0.606158 | [18] |
19 | 0.128197 | 0.120498 | 0.019030 | False | 1.205007 | [19] |
20 | 0.141093 | 0.138101 | 0.029021 | False | 1.099191 | [20] |
21 | 0.176582 | 0.153583 | 0.035291 | False | 1.143483 | [21] |
22 | 0.104396 | 0.100064 | 0.015499 | False | 1.050691 | [22] |
23 | 0.552071 | 0.501458 | 0.278595 | False | 1.086007 | [23] |
24 | 0.242334 | 0.217068 | 0.047627 | False | 1.156273 | [24] |
25 | 0.792099 | 0.715951 | 0.798775 | False | 0.919336 | [25] |
26 | 0.135247 | 0.133493 | 0.021356 | False | 1.056714 | [26] |
27 | 0.442779 | 0.424958 | 0.125763 | False | 0.999221 | [27] |
28 | 0.132903 | 0.127188 | 0.010157 | False | 1.029600 | [28] |
29 | 0.081122 | 0.076790 | 0.005443 | False | 1.034017 | [29] |
30 | 0.183624 | 0.168501 | 0.027707 | False | 1.108785 | [30] |
31 | 0.113959 | 0.111168 | 0.012363 | False | 1.038495 | [31] |
32 | 0.532749 | 0.515747 | 0.325048 | False | 0.954054 | [32] |
33 | 0.094133 | 0.091212 | 0.014747 | False | 1.053618 | [33] |
34 | 0.447798 | 0.406737 | 0.194457 | False | 1.096334 | [34] |
35 | 0.364978 | 0.352973 | 0.124295 | False | 0.943556 | [35] |
36 | 0.270838 | 0.252922 | 0.063675 | False | 1.125423 | [36] |
37 | 0.129553 | 0.121963 | 0.014043 | False | 1.086167 | [37] |
38 | 0.254914 | 0.243250 | 0.064025 | False | 1.145822 | [38] |
39 | 0.207529 | 0.194633 | 0.046887 | False | 1.113939 | [39] |
40 | 0.239182 | 0.218112 | 0.044252 | False | 1.114399 | [40] |
41 | 0.181986 | 0.173826 | 0.020285 | False | 1.057664 | [41] |
42 | 0.604112 | 0.584208 | 0.604211 | False | 0.788608 | [42] |
43 | 0.407717 | 0.369648 | 0.154161 | False | 1.063991 | [43] |
44 | 0.215722 | 0.196744 | 0.043742 | False | 1.115559 | [44] |
45 | 0.214167 | 0.200091 | 0.036238 | False | 1.160549 | [45] |
46 | 0.094284 | 0.089002 | 0.007506 | False | 1.034685 | [46] |
47 | 0.074174 | 0.072365 | 0.007535 | False | 1.035618 | [47] |
48 | 0.743323 | 0.717468 | 0.654313 | False | 0.714976 | [48] |
49 | 0.153971 | 0.147360 | 0.014502 | False | 1.092664 | [49] |
50 | 0.284706 | 0.278460 | 0.072960 | False | 1.089158 | [50] |
51 | 0.331587 | 0.309374 | 0.116933 | False | 1.054565 | [51] |
52 | 0.447965 | 0.421612 | 0.129593 | False | 1.002555 | [52] |
53 | 0.184872 | 0.175196 | 0.029896 | False | 1.032356 | [53] |
54 | 0.430382 | 0.415446 | 0.141657 | False | 1.003056 | [54] |
55 | 0.409307 | 0.369197 | 0.189729 | False | 0.936719 | [55] |
56 | 0.084764 | 0.079718 | 0.007416 | False | 1.122771 | [56] |
57 | 0.107600 | 0.103145 | 0.013947 | False | 1.078285 | [57] |
58 | 0.154672 | 0.150761 | 0.028236 | False | 1.096841 | [58] |
59 | 0.155632 | 0.150461 | 0.034848 | False | 1.068821 | [59] |
Cook score#
The Cook score for each case is calculated as:
Where
Jackknife cookscore#
This is the same as the Cook score above, but instead using the Jackknife covariance matrix.
where
is the jackknife estimate of the covariance between
is the mean of parameter
Covariance ratio#
The covariance ratio for each case is calculated as:
Delta OFV#
For the delta OFV to be calculated the cases must correspond to individuals. Then it is calculated as
where
Skipped individuals#
A list of the individuals that were skipped for each case.
Case column#
The Name of the case column in the dataset can be found in case_column
.
res.case_column
res$case_column
'ID'
References#
Rikard Nordgren, Sebastian Ueckert, Svetlana Freiberga and Mats O. Karlsson, “Faster methods for case deletion diagnostics: dOFV and linearized dOFV”, PAGE 27 (2018) Abstr 8683 https://www.page-meeting.org/?abstract=8683