Case deletion diagnostics#

Pharmpy currently creates results after a PsN cdd run.

The cdd results#

Case results#

The case_results table contains the different results and metrics for each case.

cook_score jackknife_cook_score delta_ofv dofv_influential covariance_ratio skipped_individuals
1 0.130159 0.121389 0.015207 False 1.050505 [1]
2 0.348263 0.336159 0.144045 False 0.963884 [2]
3 0.192433 0.181125 0.031030 False 1.058896 [3]
4 0.163095 0.155901 0.026142 False 1.087449 [4]
5 0.422651 0.404915 0.190732 False 0.985403 [5]
6 0.374312 0.343311 0.097063 False 1.029066 [6]
7 0.169869 0.163883 0.026223 False 1.101636 [7]
8 0.263865 0.254943 0.058123 False 1.086424 [8]
9 0.757098 0.673587 0.477910 False 1.017369 [9]
10 0.150161 0.144191 0.023623 False 1.094799 [10]
11 0.361646 0.352901 0.217902 False 0.849310 [11]
12 0.255533 0.215005 0.035375 False 1.121111 [12]
13 0.191848 0.187019 0.038199 False 1.049151 [13]
14 0.376365 0.337975 0.096680 False 1.096456 [14]
15 0.142806 0.137340 0.014709 False 1.070088 [15]
16 0.193393 0.179744 0.031711 False 1.040691 [16]
17 0.131746 0.122842 0.020637 False 1.065881 [17]
18 1.176644 0.932149 1.036787 False 0.606158 [18]
19 0.128197 0.120498 0.019030 False 1.205007 [19]
20 0.141093 0.138101 0.029021 False 1.099191 [20]
21 0.176582 0.153583 0.035291 False 1.143483 [21]
22 0.104396 0.100064 0.015499 False 1.050691 [22]
23 0.552071 0.501458 0.278595 False 1.086007 [23]
24 0.242334 0.217068 0.047627 False 1.156273 [24]
25 0.792099 0.715951 0.798775 False 0.919336 [25]
26 0.135247 0.133493 0.021356 False 1.056714 [26]
27 0.442779 0.424958 0.125763 False 0.999221 [27]
28 0.132903 0.127188 0.010157 False 1.029600 [28]
29 0.081122 0.076790 0.005443 False 1.034017 [29]
30 0.183624 0.168501 0.027707 False 1.108785 [30]
31 0.113959 0.111168 0.012363 False 1.038495 [31]
32 0.532749 0.515747 0.325048 False 0.954054 [32]
33 0.094133 0.091212 0.014747 False 1.053618 [33]
34 0.447798 0.406737 0.194457 False 1.096334 [34]
35 0.364978 0.352973 0.124295 False 0.943556 [35]
36 0.270838 0.252922 0.063675 False 1.125423 [36]
37 0.129553 0.121963 0.014043 False 1.086167 [37]
38 0.254914 0.243250 0.064025 False 1.145822 [38]
39 0.207529 0.194633 0.046887 False 1.113939 [39]
40 0.239182 0.218112 0.044252 False 1.114399 [40]
41 0.181986 0.173826 0.020285 False 1.057664 [41]
42 0.604112 0.584208 0.604211 False 0.788608 [42]
43 0.407717 0.369648 0.154161 False 1.063991 [43]
44 0.215722 0.196744 0.043742 False 1.115559 [44]
45 0.214167 0.200091 0.036238 False 1.160549 [45]
46 0.094284 0.089002 0.007506 False 1.034685 [46]
47 0.074174 0.072365 0.007535 False 1.035618 [47]
48 0.743323 0.717468 0.654313 False 0.714976 [48]
49 0.153971 0.147360 0.014502 False 1.092664 [49]
50 0.284706 0.278460 0.072960 False 1.089158 [50]
51 0.331587 0.309374 0.116933 False 1.054565 [51]
52 0.447965 0.421612 0.129593 False 1.002555 [52]
53 0.184872 0.175196 0.029896 False 1.032356 [53]
54 0.430382 0.415446 0.141657 False 1.003056 [54]
55 0.409307 0.369197 0.189729 False 0.936719 [55]
56 0.084764 0.079718 0.007416 False 1.122771 [56]
57 0.107600 0.103145 0.013947 False 1.078285 [57]
58 0.154672 0.150761 0.028236 False 1.096841 [58]
59 0.155632 0.150461 0.034848 False 1.068821 [59]

Cook score#

The Cook score for each case is calculated as:

(PiPorig)Tcov(Porig)1(PiPorig)

Where Pi is the estimated parameter vector for case i, Porig is the estimated parameter vector for the original model and cov(Porig) is the covariance matrix of the estimated parameters.

Jackknife cookscore#

This is the same as the Cook score above, but instead using the Jackknife covariance matrix.

(PiPorig)Tcovjackknife(Porig)1(PiPorig)

where

covj,kjackknife=N1Ni=1N(pi,jpj)(pi,kpk)

is the jackknife estimate of the covariance between porig,j and porig,k which is used to calculate the full jackknife covariance matrix.

pj=1Ni=1Npi,j

is the mean of parameter pi,j over all case deleted datasets. j being the index in the parameter vector and i being the case index.

Covariance ratio#

The covariance ratio for each case is calculated as:

det(cov(Pi))det(cov(Porig))

Delta OFV#

For the delta OFV to be calculated the cases must correspond to individuals. Then it is calculated as

dOFV=OFValliOFVkOFVk

where OFVall is the OFV of the full run with all individuals included, iOFVk is the individual OFV of the k:th individual in the full run and OFVk is the OFV of the run with the k:th individual removed. [dOFV]

Skipped individuals#

A list of the individuals that were skipped for each case.

Case column#

The Name of the case column in the dataset can be found in case_column.

res.case_column
'ID'

References#

[dOFV]

Rikard Nordgren, Sebastian Ueckert, Svetlana Freiberga and Mats O. Karlsson, “Faster methods for case deletion diagnostics: dOFV and linearized dOFV”, PAGE 27 (2018) Abstr 8683 https://www.page-meeting.org/?abstract=8683