Case deletion diagnostics#

Pharmpy currently creates results after a PsN cdd run.

The cdd results#

Case results#

The case_results table contains the different results and metrics for each case.

cook_score jackknife_cook_score delta_ofv dofv_influential covariance_ratio skipped_individuals
1 0.130159 0.121389 0.015207 False 1.050505 [1]
2 0.348263 0.336159 0.144045 False 0.963884 [2]
3 0.192433 0.181125 0.031030 False 1.058896 [3]
4 0.163095 0.155901 0.026142 False 1.087449 [4]
5 0.422651 0.404915 0.190732 False 0.985403 [5]
6 0.374312 0.343311 0.097063 False 1.029066 [6]
7 0.169869 0.163883 0.026223 False 1.101636 [7]
8 0.263865 0.254943 0.058123 False 1.086424 [8]
9 0.757098 0.673587 0.477910 False 1.017369 [9]
10 0.150161 0.144191 0.023623 False 1.094799 [10]
11 0.361646 0.352901 0.217902 False 0.849310 [11]
12 0.255533 0.215005 0.035375 False 1.121111 [12]
13 0.191848 0.187019 0.038199 False 1.049151 [13]
14 0.376365 0.337975 0.096680 False 1.096456 [14]
15 0.142806 0.137340 0.014709 False 1.070088 [15]
16 0.193393 0.179744 0.031711 False 1.040691 [16]
17 0.131746 0.122842 0.020637 False 1.065881 [17]
18 1.176644 0.932149 1.036787 False 0.606158 [18]
19 0.128197 0.120498 0.019030 False 1.205007 [19]
20 0.141093 0.138101 0.029021 False 1.099191 [20]
21 0.176582 0.153583 0.035291 False 1.143483 [21]
22 0.104396 0.100064 0.015499 False 1.050691 [22]
23 0.552071 0.501458 0.278595 False 1.086007 [23]
24 0.242334 0.217068 0.047627 False 1.156273 [24]
25 0.792099 0.715951 0.798775 False 0.919336 [25]
26 0.135247 0.133493 0.021356 False 1.056714 [26]
27 0.442779 0.424958 0.125763 False 0.999221 [27]
28 0.132903 0.127188 0.010157 False 1.029600 [28]
29 0.081122 0.076790 0.005443 False 1.034017 [29]
30 0.183624 0.168501 0.027707 False 1.108785 [30]
31 0.113959 0.111168 0.012363 False 1.038495 [31]
32 0.532749 0.515747 0.325048 False 0.954054 [32]
33 0.094133 0.091212 0.014747 False 1.053618 [33]
34 0.447798 0.406737 0.194457 False 1.096334 [34]
35 0.364978 0.352973 0.124295 False 0.943556 [35]
36 0.270838 0.252922 0.063675 False 1.125423 [36]
37 0.129553 0.121963 0.014043 False 1.086167 [37]
38 0.254914 0.243250 0.064025 False 1.145822 [38]
39 0.207529 0.194633 0.046887 False 1.113939 [39]
40 0.239182 0.218112 0.044252 False 1.114399 [40]
41 0.181986 0.173826 0.020285 False 1.057664 [41]
42 0.604112 0.584208 0.604211 False 0.788608 [42]
43 0.407717 0.369648 0.154161 False 1.063991 [43]
44 0.215722 0.196744 0.043742 False 1.115559 [44]
45 0.214167 0.200091 0.036238 False 1.160549 [45]
46 0.094284 0.089002 0.007506 False 1.034685 [46]
47 0.074174 0.072365 0.007535 False 1.035618 [47]
48 0.743323 0.717468 0.654313 False 0.714976 [48]
49 0.153971 0.147360 0.014502 False 1.092664 [49]
50 0.284706 0.278460 0.072960 False 1.089158 [50]
51 0.331587 0.309374 0.116933 False 1.054565 [51]
52 0.447965 0.421612 0.129593 False 1.002555 [52]
53 0.184872 0.175196 0.029896 False 1.032356 [53]
54 0.430382 0.415446 0.141657 False 1.003056 [54]
55 0.409307 0.369197 0.189729 False 0.936719 [55]
56 0.084764 0.079718 0.007416 False 1.122771 [56]
57 0.107600 0.103145 0.013947 False 1.078285 [57]
58 0.154672 0.150761 0.028236 False 1.096841 [58]
59 0.155632 0.150461 0.034848 False 1.068821 [59]

Cook score#

The Cook score for each case is calculated as:

\[\sqrt{(P_i - P_{orig})^T \operatorname{cov}(P_{orig})^{-1} (P_i - P_{orig})}\]

Where \(P_i\) is the estimated parameter vector for case \(i\), \(P_{orig}\) is the estimated parameter vector for the original model and \(\operatorname{cov}(P_{orig})\) is the covariance matrix of the estimated parameters.

Jackknife cookscore#

This is the same as the Cook score above, but instead using the Jackknife covariance matrix.

\[\sqrt{(P_i - P_{orig})^T \operatorname{cov}^{\operatorname{jackknife}}(P_{orig})^{-1} (P_i - P_{orig})}\]

where

\[\operatorname{cov}_{j,k}^{\operatorname{jackknife}} = \frac{N - 1}{N}\sum_{i=1}^N(p_{i,j} - \overline{p}_j)(p_{i,k} - \overline{p}_k)\]

is the jackknife estimate of the covariance between \(p_{orig,j}\) and \(p_{orig,k}\) which is used to calculate the full jackknife covariance matrix.

\[\overline{p}_j = \frac{1}{N}\sum_{i=1}^N p_{i,j}\]

is the mean of parameter \(p_{i,j}\) over all case deleted datasets. \(j\) being the index in the parameter vector and \(i\) being the case index.

Covariance ratio#

The covariance ratio for each case is calculated as:

\[\sqrt{\frac{\operatorname{det}({\operatorname{cov}(P_i))}}{\operatorname{det}(\operatorname{cov}(P_{orig}))}}\]

Delta OFV#

For the delta OFV to be calculated the cases must correspond to individuals. Then it is calculated as

\[dOFV = OFV_{all} - iOFV_{k} - OFV_{k}\]

where \(OFV_{all}\) is the OFV of the full run with all individuals included, \(iOFV_k\) is the individual OFV of the k:th individual in the full run and \(OFV_k\) is the OFV of the run with the k:th individual removed. [dOFV]

Skipped individuals#

A list of the individuals that were skipped for each case.

Case column#

The Name of the case column in the dataset can be found in case_column.

res.case_column
'ID'

References#

[dOFV]

Rikard Nordgren, Sebastian Ueckert, Svetlana Freiberga and Mats O. Karlsson, “Faster methods for case deletion diagnostics: dOFV and linearized dOFV”, PAGE 27 (2018) Abstr 8683 https://www.page-meeting.org/?abstract=8683