Case deletion diagnostics#
Pharmpy currently creates results after a PsN cdd run.
The cdd results#
Case results#
The case_results
table contains the different results and metrics for each case.
cook_score | jackknife_cook_score | delta_ofv | dofv_influential | covariance_ratio | skipped_individuals | |
---|---|---|---|---|---|---|
1 | 0.130159 | 0.121389 | 0.015207 | False | 1.050505 | [1] |
2 | 0.348263 | 0.336159 | 0.144045 | False | 0.963884 | [2] |
3 | 0.192433 | 0.181125 | 0.031030 | False | 1.058896 | [3] |
4 | 0.163095 | 0.155901 | 0.026142 | False | 1.087449 | [4] |
5 | 0.422651 | 0.404915 | 0.190732 | False | 0.985403 | [5] |
6 | 0.374312 | 0.343311 | 0.097063 | False | 1.029066 | [6] |
7 | 0.169869 | 0.163883 | 0.026223 | False | 1.101636 | [7] |
8 | 0.263865 | 0.254943 | 0.058123 | False | 1.086424 | [8] |
9 | 0.757098 | 0.673587 | 0.477910 | False | 1.017369 | [9] |
10 | 0.150161 | 0.144191 | 0.023623 | False | 1.094799 | [10] |
11 | 0.361646 | 0.352901 | 0.217902 | False | 0.849310 | [11] |
12 | 0.255533 | 0.215005 | 0.035375 | False | 1.121111 | [12] |
13 | 0.191848 | 0.187019 | 0.038199 | False | 1.049151 | [13] |
14 | 0.376365 | 0.337975 | 0.096680 | False | 1.096456 | [14] |
15 | 0.142806 | 0.137340 | 0.014709 | False | 1.070088 | [15] |
16 | 0.193393 | 0.179744 | 0.031711 | False | 1.040691 | [16] |
17 | 0.131746 | 0.122842 | 0.020637 | False | 1.065881 | [17] |
18 | 1.176644 | 0.932149 | 1.036787 | False | 0.606158 | [18] |
19 | 0.128197 | 0.120498 | 0.019030 | False | 1.205007 | [19] |
20 | 0.141093 | 0.138101 | 0.029021 | False | 1.099191 | [20] |
21 | 0.176582 | 0.153583 | 0.035291 | False | 1.143483 | [21] |
22 | 0.104396 | 0.100064 | 0.015499 | False | 1.050691 | [22] |
23 | 0.552071 | 0.501458 | 0.278595 | False | 1.086007 | [23] |
24 | 0.242334 | 0.217068 | 0.047627 | False | 1.156273 | [24] |
25 | 0.792099 | 0.715951 | 0.798775 | False | 0.919336 | [25] |
26 | 0.135247 | 0.133493 | 0.021356 | False | 1.056714 | [26] |
27 | 0.442779 | 0.424958 | 0.125763 | False | 0.999221 | [27] |
28 | 0.132903 | 0.127188 | 0.010157 | False | 1.029600 | [28] |
29 | 0.081122 | 0.076790 | 0.005443 | False | 1.034017 | [29] |
30 | 0.183624 | 0.168501 | 0.027707 | False | 1.108785 | [30] |
31 | 0.113959 | 0.111168 | 0.012363 | False | 1.038495 | [31] |
32 | 0.532749 | 0.515747 | 0.325048 | False | 0.954054 | [32] |
33 | 0.094133 | 0.091212 | 0.014747 | False | 1.053618 | [33] |
34 | 0.447798 | 0.406737 | 0.194457 | False | 1.096334 | [34] |
35 | 0.364978 | 0.352973 | 0.124295 | False | 0.943556 | [35] |
36 | 0.270838 | 0.252922 | 0.063675 | False | 1.125423 | [36] |
37 | 0.129553 | 0.121963 | 0.014043 | False | 1.086167 | [37] |
38 | 0.254914 | 0.243250 | 0.064025 | False | 1.145822 | [38] |
39 | 0.207529 | 0.194633 | 0.046887 | False | 1.113939 | [39] |
40 | 0.239182 | 0.218112 | 0.044252 | False | 1.114399 | [40] |
41 | 0.181986 | 0.173826 | 0.020285 | False | 1.057664 | [41] |
42 | 0.604112 | 0.584208 | 0.604211 | False | 0.788608 | [42] |
43 | 0.407717 | 0.369648 | 0.154161 | False | 1.063991 | [43] |
44 | 0.215722 | 0.196744 | 0.043742 | False | 1.115559 | [44] |
45 | 0.214167 | 0.200091 | 0.036238 | False | 1.160549 | [45] |
46 | 0.094284 | 0.089002 | 0.007506 | False | 1.034685 | [46] |
47 | 0.074174 | 0.072365 | 0.007535 | False | 1.035618 | [47] |
48 | 0.743323 | 0.717468 | 0.654313 | False | 0.714976 | [48] |
49 | 0.153971 | 0.147360 | 0.014502 | False | 1.092664 | [49] |
50 | 0.284706 | 0.278460 | 0.072960 | False | 1.089158 | [50] |
51 | 0.331587 | 0.309374 | 0.116933 | False | 1.054565 | [51] |
52 | 0.447965 | 0.421612 | 0.129593 | False | 1.002555 | [52] |
53 | 0.184872 | 0.175196 | 0.029896 | False | 1.032356 | [53] |
54 | 0.430382 | 0.415446 | 0.141657 | False | 1.003056 | [54] |
55 | 0.409307 | 0.369197 | 0.189729 | False | 0.936719 | [55] |
56 | 0.084764 | 0.079718 | 0.007416 | False | 1.122771 | [56] |
57 | 0.107600 | 0.103145 | 0.013947 | False | 1.078285 | [57] |
58 | 0.154672 | 0.150761 | 0.028236 | False | 1.096841 | [58] |
59 | 0.155632 | 0.150461 | 0.034848 | False | 1.068821 | [59] |
Cook score#
The Cook score for each case is calculated as:
Where \(P_i\) is the estimated parameter vector for case \(i\), \(P_{orig}\) is the estimated parameter vector for the original model and \(\operatorname{cov}(P_{orig})\) is the covariance matrix of the estimated parameters.
Jackknife cookscore#
This is the same as the Cook score above, but instead using the Jackknife covariance matrix.
where
is the jackknife estimate of the covariance between \(p_{orig,j}\) and \(p_{orig,k}\) which is used to calculate the full jackknife covariance matrix.
is the mean of parameter \(p_{i,j}\) over all case deleted datasets. \(j\) being the index in the parameter vector and \(i\) being the case index.
Covariance ratio#
The covariance ratio for each case is calculated as:
Delta OFV#
For the delta OFV to be calculated the cases must correspond to individuals. Then it is calculated as
where \(OFV_{all}\) is the OFV of the full run with all individuals included, \(iOFV_k\) is the individual OFV of the k:th individual in the full run and \(OFV_k\) is the OFV of the run with the k:th individual removed. [dOFV]
Skipped individuals#
A list of the individuals that were skipped for each case.
Case column#
The Name of the case column in the dataset can be found in case_column
.
res.case_column
res$case_column
'ID'
References#
Rikard Nordgren, Sebastian Ueckert, Svetlana Freiberga and Mats O. Karlsson, “Faster methods for case deletion diagnostics: dOFV and linearized dOFV”, PAGE 27 (2018) Abstr 8683 https://www.page-meeting.org/?abstract=8683