QA#

Pharmpy currently creates results after a PsN qa run.

The qa results#

Overview#

The overview dofv table lists the most impactful modifications identified by QA. More details for each result can be found in the individual sections.

The table shows an overview of possible modifications to different model aspects, expected improements in OFV as well as number of additional parameters used.

dofv df
section run dvid
parameter_variability fullblock NaN 2.592698 1.0
boxcox NaN 2.197887 2.0
tdist NaN 0.007493 2.0
add_etas NaN NaN NaN
iov NaN NaN NaN
covariates frem NaN 4.521171 4.0
ET1APGR-2 NaN 2.487930 1.0
residual_error_model dtbs 1.0 13.910000 2.0
time_varying 1.0 8.030000 2.0

Structural bias#

This section aims at diagnosing the structural component of the model. It does so by estimating the mean difference between model predictions and observations as a function of several independent variables.

The structural_bias table shows the CWRES and CPRED given different bins of the independent variable.

binmin binmax cwres cpred
idv dvid binid
TIME 1 1 0.00 2.00 0.28 -6
2 2.00 2.55 0.12 -2
3 2.55 11.00 -0.29 6
4 11.00 47.25 0.04 -1
5 47.25 63.50 -0.39 7
6 63.50 83.10 0.20 -4
7 83.10 112.30 0.11 -2
8 112.30 135.50 -0.29 5
9 135.50 159.80 0.19 -4
10 159.80 390.00 -0.02 1
TAD 1 1 0.00 1.50 0.06 -1
2 1.50 2.00 0.41 -8
3 2.00 3.00 -0.13 3
4 3.00 6.00 -0.06 1
5 6.00 11.00 -0.18 3
6 11.00 11.50 0.54 -10
7 11.50 11.70 -0.24 4
8 11.70 14.00 0.06 -1
9 14.00 258.00 0.07 -1
PRED 1 1 8.00 17.67 0.19 -5
2 17.67 19.50 0.10 -1
3 19.50 20.13 -0.17 3
4 20.13 21.39 -0.01 0
5 21.39 24.32 0.24 -4
6 24.32 26.63 0.06 -1
7 26.63 28.70 0.05 -1
8 28.70 31.28 -0.05 1
9 31.28 36.34 0.07 0
10 36.34 54.00 -0.47 9

Fullblock#

This section shows the effect of including a full block correlation struture in the base mdel.

The fullblock_parameters contains the estimated standard deviation (sd), correlation (corr) and expected improvement in OFV after inclusion of a full block correlation structure of the random effects.

new old
OMEGA(1,1) 0.183463 0.171306
OMEGA(2,1) 0.554610 NaN
OMEGA(2,2) 0.154408 0.167053

Boxcox#

This section shows the effect of applying a Box-Cox transformation to the ETA variables in the base model.

The boxcox_parameters contains the estimated shape parameter (Lambda) and expected improvment in OFV for a Box-Cox transformation of the random effects.

lambda new_sd old_sd
ETA(1) -0.922083 0.182037 0.171306
ETA(2) 1.332800 0.166021 0.167053

Tdist#

This section shows the effect of applying a t-distribution transformation to the ETA variables in the base model.

The tdist_parameters contains the estimated degrees of freedom and expected improvement in OFV for a t-distribution transformation of the random effects.

df new_sd old_sd
ETA(1) 79.9997 0.168477 0.171306
ETA(2) 79.9986 0.166469 0.167053

Residual error#

This section shows the effect of including extended residual error models in the base model.

The residual_error table contains the residual error models, resulting expected improvement in OFV, required additional model parameters as well as their estimates.

dOFV additional_parameters parameters
DVID model
1.0 dtbs 13.91 2 {'lambda': 0.242, 'zeta': 0.042}
time_varying 8.03 2 {'sdeps_0-t0': 0.271, 'sdeps_t0-390': 0.956, '...
tdist 5.53 1 {'df': 5.106}
autocorrelation 3.34 1 {'half-life': 16.7}
IIV_on_RUV 1.31 1 {'%CV': 21.772}
power 0.03 1 {'delta_power': -0.037}

Covariate effects#

This section evaluates the impact of supplied covariates.

The covariate_effects table shows the expected improvement when including covariates.

dofv coeff
parameter covariate
ETA(1) APGR 2.48793 -0.033334
WGT 0.48218 0.052342
ETA(2) APGR 0.59034 0.008371
WGT 0.00887 -0.003273