Bootstrap#
Pharmpy can do postprocessing for the PsN bootstrap tool.
The Bootstrap postprocessing and results#
Parameter statistics#
The parameter_statistics
table contains summary statistics for over the bootstrap runs for the model parameters.
Column |
Description |
---|---|
|
Mean over all bootstrap runs |
|
Median over all bootstrap runs |
|
Difference between the mean and the value in the original model |
|
Standard deviation over all bootstrap runs |
|
Standard error divided by the mean |
mean | median | bias | stderr | RSE | |
---|---|---|---|---|---|
POP_CL | 0.005890 | 0.005891 | NaN | 0.000460 | 0.078170 |
POP_V | 1.431004 | 1.422850 | NaN | 0.073015 | 0.051024 |
IVCL | 0.149260 | 0.124740 | NaN | 0.112645 | 0.754686 |
IVV | 0.189801 | 0.185916 | NaN | 0.045563 | 0.240056 |
SIGMA_1_1 | 0.015470 | 0.015184 | NaN | 0.003553 | 0.229641 |
The parameter_distribution
table gives a numeric overview of the distributions of the bootstrap parameter estimates.
For each parameter it contains the lowest and highest values, the median and values at some other selected percentiles.
All percentiles are calculated using linear interpolation if it falls between two data points. If the two data points are \(x_0\)
and \(x_1\) the percentile would be \(x_0 + (x_1 - x_0) f\) where \(f\) is \([np]\), the fractional part of the number of observations
\(n\) multiplied by the percentile \(p\).
min | 0.05% | 0.5% | 2.5% | 5% | median | 95% | 97.5% | 99.5% | 99.95% | max | |
---|---|---|---|---|---|---|---|---|---|---|---|
POP_CL | 0.004851 | 0.004857 | 0.004902 | 0.005031 | 0.005149 | 0.005891 | 0.006659 | 0.006846 | 0.007353 | 0.007460 | 0.007472 |
POP_V | 1.277810 | 1.278405 | 1.283765 | 1.309488 | 1.326434 | 1.422850 | 1.547333 | 1.582182 | 1.631219 | 1.644090 | 1.645520 |
IVCL | 0.000011 | 0.000097 | 0.000869 | 0.006275 | 0.013558 | 0.124740 | 0.353679 | 0.367954 | 0.416361 | 0.433175 | 0.435043 |
IVV | 0.079940 | 0.080472 | 0.085258 | 0.101225 | 0.119080 | 0.185916 | 0.265224 | 0.282926 | 0.290666 | 0.291792 | 0.291917 |
SIGMA_1_1 | 0.007645 | 0.007719 | 0.008382 | 0.009481 | 0.009956 | 0.015184 | 0.021341 | 0.022691 | 0.025584 | 0.027052 | 0.027215 |
The parameter_estimates_histogram
give histograms for the distributions of the parameter estimates:
The raw parameter data is available in parameter_estimates
POP_CL | POP_V | IVCL | IVV | SIGMA_1_1 | |
---|---|---|---|---|---|
0 | 0.006755 | 1.52531 | 0.108662 | 0.258316 | 0.011408 |
1 | 0.005424 | 1.43599 | 0.270899 | 0.156400 | 0.014023 |
2 | 0.006585 | 1.38641 | 0.226891 | 0.162075 | 0.010971 |
3 | 0.005757 | 1.47090 | 0.000011 | 0.193243 | 0.019133 |
4 | 0.006875 | 1.50111 | 0.345382 | 0.176756 | 0.009135 |
... | ... | ... | ... | ... | ... |
95 | 0.005683 | 1.34027 | 0.163931 | 0.159868 | 0.010816 |
96 | 0.005795 | 1.34379 | 0.075865 | 0.194188 | 0.018041 |
97 | 0.006078 | 1.35172 | 0.040387 | 0.214176 | 0.015683 |
98 | 0.005353 | 1.44898 | 0.155477 | 0.258743 | 0.020128 |
99 | 0.006247 | 1.49069 | 0.125491 | 0.219146 | 0.018971 |
100 rows × 5 columns
OFV statistics#
Summary statistics for the objective function values of the bootstrap runs can be found in the ofv_statistics
table, which has the following rows:
Row |
Description |
---|---|
|
OFVs from the bootstrap runs |
|
Sum of iOFVs from original modelfit of individuals included in each bootstrap run |
|
OFVs from all dofv runs, i.e. evaluations on original data on boostrap models |
|
OFV of original model |
|
Difference between original_bootdata_ofv and bootstrap_bootdata_ofv for each model |
|
Difference between bootstrap_origdata_ofv and the OFV of the original model |
Note that some of these rows will not be created if the bootstrap was run without the dofv option.
mean | median | stderr | |
---|---|---|---|
bootstrap_bootdata_ofv | 730.08165 | 729.644638 | 44.737749 |
original_bootdata_ofv | NaN | NaN | NaN |
bootstrap_origdata_ofv | NaN | NaN | NaN |
delta_bootdata | NaN | NaN | NaN |
delta_origdata | NaN | NaN | NaN |
The ofv_distribution
gives a numeric overview of the OFVs similar to the parameter_distriution
described above.
min | 0.05% | 0.5% | 2.5% | 5% | median | 95% | 97.5% | 99.5% | 99.95% | max | |
---|---|---|---|---|---|---|---|---|---|---|---|
bootstrap_bootdata_ofv | 593.389406 | 593.972104 | 599.216391 | 654.548507 | 660.573965 | 729.644638 | 795.776225 | 803.946508 | 816.836314 | 820.873796 | 821.322405 |
original_bootdata_ofv | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
bootstrap_origdata_ofv | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
delta_bootdata | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
delta_origdata | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
A histogram of the bootstrap ofv from ofv_plot
:
The dofv_quantiles_plot
show distribution of the delta-OFV metrics over the distribution quantiles. They are compared with
a chi-square distribution.
The raw ofv data is available in ofvs
.
bootstrap_bootdata_ofv | original_bootdata_ofv | bootstrap_origdata_ofv | delta_bootdata | delta_origdata | |
---|---|---|---|---|---|
0 | 664.272157 | NaN | NaN | NaN | NaN |
1 | 749.459450 | NaN | NaN | NaN | NaN |
2 | 749.061103 | NaN | NaN | NaN | NaN |
3 | 660.725470 | NaN | NaN | NaN | NaN |
4 | 679.585721 | NaN | NaN | NaN | NaN |
... | ... | ... | ... | ... | ... |
95 | 702.481949 | NaN | NaN | NaN | NaN |
96 | 748.074871 | NaN | NaN | NaN | NaN |
97 | 710.203812 | NaN | NaN | NaN | NaN |
98 | 787.180418 | NaN | NaN | NaN | NaN |
99 | 771.202034 | NaN | NaN | NaN | NaN |
100 rows × 5 columns
Covariance matrix#
A covariance matrix for the parameters is available in covariance_matrix
:
POP_CL | POP_V | IVCL | IVV | SIGMA_1_1 | |
---|---|---|---|---|---|
POP_CL | 2.119974e-07 | 0.000011 | -0.000002 | 0.000001 | -3.491440e-07 |
POP_V | 1.096413e-05 | 0.005331 | 0.000922 | 0.001519 | 3.460998e-05 |
IVCL | -2.365879e-06 | 0.000922 | 0.012689 | -0.000981 | -1.760432e-04 |
IVV | 1.331894e-06 | 0.001519 | -0.000981 | 0.002076 | 7.755294e-05 |
SIGMA_1_1 | -3.491440e-07 | 0.000035 | -0.000176 | 0.000078 | 1.262063e-05 |
Included individuals#
The included_individuals
is a list of lists with all individuals that were included in each bootstrap run.
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ... | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 28 | 8 | 57 | 59 | 56 | 22 | 6 | 30 | 47 | 16 | ... | 2 | 20 | 23 | 38 | 56 | 1 | 52 | 32 | 11 | 31 |
1 | 22 | 48 | 13 | 7 | 40 | 24 | 10 | 18 | 34 | 32 | ... | 48 | 15 | 55 | 9 | 12 | 27 | 27 | 35 | 49 | 15 |
2 | 25 | 24 | 43 | 25 | 39 | 23 | 58 | 3 | 10 | 5 | ... | 10 | 49 | 22 | 50 | 50 | 46 | 4 | 57 | 29 | 55 |
3 | 29 | 16 | 44 | 34 | 10 | 14 | 30 | 31 | 43 | 22 | ... | 12 | 30 | 8 | 35 | 30 | 17 | 49 | 9 | 14 | 29 |
4 | 27 | 19 | 30 | 36 | 38 | 22 | 9 | 15 | 50 | 23 | ... | 45 | 40 | 46 | 9 | 43 | 56 | 31 | 42 | 57 | 57 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
95 | 48 | 1 | 31 | 1 | 41 | 50 | 40 | 59 | 23 | 23 | ... | 57 | 29 | 53 | 8 | 27 | 13 | 13 | 36 | 17 | 29 |
96 | 31 | 2 | 56 | 43 | 9 | 47 | 31 | 5 | 9 | 52 | ... | 46 | 44 | 1 | 21 | 15 | 6 | 51 | 8 | 11 | 26 |
97 | 4 | 5 | 53 | 55 | 11 | 27 | 56 | 6 | 2 | 4 | ... | 12 | 4 | 50 | 58 | 8 | 7 | 42 | 54 | 19 | 29 |
98 | 12 | 52 | 2 | 31 | 23 | 55 | 38 | 4 | 28 | 56 | ... | 18 | 5 | 14 | 57 | 48 | 40 | 16 | 30 | 12 | 13 |
99 | 58 | 51 | 21 | 9 | 39 | 28 | 22 | 30 | 43 | 18 | ... | 6 | 32 | 7 | 23 | 56 | 57 | 53 | 38 | 4 | 27 |
100 rows × 59 columns