Source code for pharmpy.parameter_sampling

import warnings
from functools import partial

import numpy as np
import pandas as pd

from pharmpy.math import is_posdef, nearest_posdef, sample_truncated_joint_normal


[docs]def sample_from_function(model, samplingfn, parameters=None, force_posdef_samples=None, n=1): """Sample parameter vectors using a general function The sampling function will be given three arguments: - lower - lower bounds of parameters - upper - upper bounds of parameters - n - number of samples """ if parameters is None: parameters = model.parameters.names parameter_summary = model.parameters.to_dataframe().loc[parameters] parameter_summary = parameter_summary[~parameter_summary['fix']] lower = parameter_summary.lower.astype('float64').to_numpy() upper = parameter_summary.upper.astype('float64').to_numpy() # reject non-posdef kept_samples = pd.DataFrame() remaining = n if force_posdef_samples == 0: force_posdef = True else: force_posdef = False i = 0 while remaining > 0: samples = samplingfn(lower, upper, n=remaining) df = pd.DataFrame(samples, columns=parameters) if not force_posdef: selected = df[df.apply(model.random_variables.validate_parameters, axis=1)] else: rvs = model.random_variables selected = df.transform(lambda row: rvs.nearest_valid_parameters(row), axis=1) kept_samples = pd.concat((kept_samples, selected)) remaining = n - len(kept_samples) i += 1 if not force_posdef and force_posdef_samples is not None and i >= force_posdef_samples: force_posdef = True return kept_samples.reset_index(drop=True)
[docs]def sample_uniformly( model, fraction=0.1, parameters=None, force_posdef_samples=None, n=1, seed=None ): """Sample parameter vectors using uniform sampling Each parameter value will be randomly sampled from a uniform distriution with lower bound estimate - estimate * fraction and upper bound estimate + estimate * fraction """ if seed is None or isinstance(seed, int): seed = np.random.default_rng(seed) def fn(lower, upper, n): samples = np.empty((n, len(lower))) for i, (a, b) in enumerate(zip(lower, upper)): samples[i, :] = seed.uniform(a, b, n) return samples samples = sample_from_function( model, fn, parameters=parameters, force_posdef_samples=force_posdef_samples, n=n ) return samples
[docs]def sample_from_covariance_matrix( model, modelfit_results=None, parameters=None, force_posdef_samples=None, force_posdef_covmatrix=False, n=1, seed=None, ): """Sample parameter vectors using the covariance matrix If modelfit_results is not provided the results from the model will be used Parameters ---------- parameters Use to only sample a subset of the parameters. None means all force_posdef_samples Set to how many iterations to do before forcing all samples to be positive definite. None is default and means never and 0 means always Returns ------- A dataframe with one sample per row """ if modelfit_results is None: modelfit_results = model.modelfit_results if parameters is None: parameters = list(modelfit_results.parameter_estimates.index) if seed is None or isinstance(seed, int): seed = np.random.default_rng(seed) pe = modelfit_results.parameter_estimates[parameters] index = pe.index mu = pe.to_numpy() sigma = modelfit_results.covariance_matrix[parameters].loc[parameters].to_numpy() if not is_posdef(sigma): if force_posdef_covmatrix: old_sigma = sigma sigma = nearest_posdef(sigma) delta_frobenius = np.linalg.norm(old_sigma) - np.linalg.norm(sigma) delta_max = np.abs(old_sigma).max() - np.abs(sigma).max() warnings.warn( f'Covariance matrix was forced to become positive definite.\n' f' Difference in the frobenius norm: {delta_frobenius:.3e}\n' f' Difference in the max norm: {delta_max:.3e}\n' ) else: raise ValueError("Uncertainty covariance matrix not positive-definite") fn = partial(sample_truncated_joint_normal, mu, sigma, seed=seed) samples = sample_from_function( model, fn, parameters=index, force_posdef_samples=force_posdef_samples, n=n ) return samples
[docs]def sample_individual_estimates(model, parameters=None, samples_per_id=100, seed=None): """Sample individual estimates given their covariance. Parameters ---------- parameters A list of a subset of parameters to sample. Default is None, which means all. Returns ------- Pool of samples in a DataFrame """ if seed is None or isinstance(seed, int): seed = np.random.default_rng(seed) ests = model.modelfit_results.individual_estimates covs = model.modelfit_results.individual_estimates_covariance if parameters is None: parameters = ests.columns ests = ests[parameters] samples = pd.DataFrame() for (idx, mu), sigma in zip(ests.iterrows(), covs): sigma = sigma[parameters].loc[parameters] sigma = nearest_posdef(sigma) id_samples = seed.multivariate_normal(mu.values, sigma.values, size=samples_per_id) id_df = pd.DataFrame(id_samples, columns=ests.columns) id_df.index = [idx] * len(id_df) # ID as index samples = pd.concat((samples, id_df)) return samples