Source code for pharmpy.modeling.evaluation

from __future__ import annotations

from collections.abc import Mapping
from typing import Optional, Union

from pharmpy.basic import Expr, TExpr
from pharmpy.deps import numpy as np
from pharmpy.deps import pandas as pd
from pharmpy.deps import sympy
from pharmpy.deps.scipy import linalg
from pharmpy.internals.expr.eval import eval_expr
from pharmpy.model import Model

from .expressions import (
    calculate_epsilon_gradient_expression,
    calculate_eta_gradient_expression,
    get_individual_prediction_expression,
    get_population_prediction_expression,
)

ParameterMap = Mapping[Union[str, 'sympy.Symbol'], Union[float, 'sympy.Float']]


class DataFrameMapping(Mapping['sympy.Symbol', 'np.ndarray']):
    def __init__(self, df: pd.DataFrame):
        self._df = df

    def __getitem__(self, symbol: sympy.Symbol):
        return self._df[symbol.name].to_numpy()

    def __len__(self):
        return len(self._df)

    def __iter__(self):
        return map(sympy.Symbol, self._df.columns)


[docs] def evaluate_expression( model: Model, expression: Union[str, TExpr], parameter_estimates: Optional[ParameterMap] = None, ): """Evaluate expression using model Calculate the value of expression for each data record. The expression can contain dataset columns, variables in model and population parameters. If the model has parameter estimates these will be used. Initial estimates will be used for non-estimated parameters. Parameters ---------- model : Model Pharmpy model expression : str or TExpr Expression to evaluate parameter_estimates : pd.Series Parameter estimates to use instead of initial estimates Returns ------- pd.Series A series of one evaluated value for each data record Examples -------- >>> from pharmpy.modeling import load_example_model, evaluate_expression >>> from pharmpy.tools import load_example_modelfit_results >>> model = load_example_model("pheno") >>> results = load_example_modelfit_results("pheno") >>> pe = results.parameter_estimates >>> evaluate_expression(model, "TVCL*1000", parameter_estimates=pe) 0 6.573770 1 6.573770 2 6.573770 3 6.573770 4 6.573770 ... 739 5.165105 740 5.165105 741 5.165105 742 5.165105 743 5.165105 Length: 744, dtype: float64 """ expression = Expr(expression) full_expr = model.statements.before_odes.full_expression(expression) inits = model.parameters.inits mapping = inits if parameter_estimates is None else {**inits, **parameter_estimates} expr = full_expr.subs(mapping) df = model.dataset array = eval_expr(expr, len(df), DataFrameMapping(df)) return pd.Series(array)
[docs] def evaluate_population_prediction( model: Model, parameters: Optional[ParameterMap] = None, dataset: Optional[pd.DataFrame] = None ): """Evaluate the numeric population prediction The prediction is evaluated at the current model parameter values or optionally at the given parameter values. The evaluation is done for each data record in the model dataset or optionally using the dataset argument. This function currently only support models without ODE systems Parameters ---------- model : Model Pharmpy model parameters : dict Optional dictionary of parameters and values dataset : pd.DataFrame Optional dataset Returns ------- pd.Series Population predictions Examples -------- >>> from pharmpy.modeling import load_example_model, evaluate_population_prediction >>> from pharmpy.tools import load_example_modelfit_results >>> model = load_example_model("pheno_linear") >>> results = load_example_modelfit_results("pheno_linear") >>> pe = results.parameter_estimates >>> evaluate_population_prediction(model, parameters=dict(pe)) 0 17.529739 1 28.179910 2 9.688648 3 17.798916 4 25.023225 ... 150 22.459036 151 29.223295 152 20.217288 153 28.472888 154 34.226455 Name: PRED, Length: 155, dtype: float64 See also -------- evaluate_individual_prediction : Evaluate the individual prediction """ y = get_population_prediction_expression(model) mapping = model.parameters.inits if parameters is None else parameters expr = y.subs(mapping) df = model.dataset if dataset is None else dataset pred = eval_expr(expr, len(df), DataFrameMapping(df)) return pd.Series(pred, name='PRED')
[docs] def evaluate_individual_prediction( model: Model, etas: Optional[pd.DataFrame] = None, parameters: Optional[ParameterMap] = None, dataset: Optional[pd.DataFrame] = None, ): """Evaluate the numeric individual prediction The prediction is evaluated at the current model parameter values or optionally at the given parameter values. The evaluation is done for each data record in the model dataset or optionally using the dataset argument. The evaluation is done at the current eta values or optionally at the given eta values. This function currently only support models without ODE systems Parameters ---------- model : Model Pharmpy model etas : dict Optional dictionary of eta values parameters : dict Optional dictionary of parameters and values dataset : pd.DataFrame Optional dataset Returns ------- pd.Series Individual predictions Examples -------- >>> from pharmpy.modeling import load_example_model, evaluate_individual_prediction >>> from pharmpy.tools import load_example_modelfit_results >>> model = load_example_model("pheno_linear") >>> results = load_example_modelfit_results("pheno_linear") >>> etas = results.individual_estimates >>> evaluate_individual_prediction(model, etas=etas) 0 17.771084 1 28.881859 2 11.441728 3 21.113050 4 29.783055 ... 150 25.375041 151 31.833395 152 22.876707 153 31.905095 154 38.099690 Name: IPRED, Length: 155, dtype: float64 See also -------- evaluate_population_prediction : Evaluate the population prediction """ y = get_individual_prediction_expression(model) mapping = model.parameters.inits if parameters is None else parameters y = y.subs(mapping) df = model.dataset if dataset is None else dataset idcol = model.datainfo.id_column.name _etas = ( pd.DataFrame( 0, index=df[idcol].unique(), columns=model.random_variables.etas.names, ) if etas is None else etas ) _df = df.join(_etas, on=idcol) ipred = eval_expr(y, len(_df), DataFrameMapping(_df)) return pd.Series(ipred, name='IPRED')
def _replace_parameters(model: Model, y: list[sympy.Expr], parameters: Optional[ParameterMap]): mapping = model.parameters.inits if parameters is None else parameters return [x.subs(mapping) for x in y]
[docs] def evaluate_eta_gradient( model: Model, etas: Optional[pd.DataFrame] = None, parameters: Optional[ParameterMap] = None, dataset: Optional[pd.DataFrame] = None, ): """Evaluate the numeric eta gradient The gradient is evaluated at the current model parameter values or optionally at the given parameter values. The gradient is done for each data record in the model dataset or optionally using the dataset argument. The gradient is done at the current eta values or optionally at the given eta values. This function currently only support models without ODE systems Parameters ---------- model : Model Pharmpy model etas : dict Optional dictionary of eta values parameters : dict Optional dictionary of parameters and values dataset : pd.DataFrame Optional dataset Returns ------- pd.DataFrame Gradient Examples -------- >>> from pharmpy.modeling import load_example_model, evaluate_eta_gradient >>> from pharmpy.tools import load_example_modelfit_results >>> model = load_example_model("pheno_linear") >>> results = load_example_modelfit_results("pheno_linear") >>> etas = results.individual_estimates >>> evaluate_eta_gradient(model, etas=etas) dF/dETA_1 dF/dETA_2 0 -0.159537 -17.609116 1 -9.325893 -19.562289 2 -0.104417 -11.346161 3 -4.452951 -16.682310 4 -10.838840 -18.981836 .. ... ... 150 -5.424423 -19.973013 151 -14.497185 -17.344797 152 -0.198714 -22.697161 153 -7.987731 -23.941806 154 -15.817067 -22.309945 <BLANKLINE> [155 rows x 2 columns] See also -------- evaluate_epsilon_gradient : Evaluate the epsilon gradient """ y = calculate_eta_gradient_expression(model) y = _replace_parameters(model, y, parameters) df = model.dataset if dataset is None else dataset idcol = model.datainfo.id_column.name if etas is not None: _etas = etas elif model.initial_individual_estimates is not None: _etas = model.initial_individual_estimates else: _etas = pd.DataFrame( 0, index=df[idcol].unique(), columns=model.random_variables.etas.names, ) derivative_names = [f'dF/d{eta}' for eta in model.random_variables.etas.names] _df = df.join(_etas, on=idcol) return pd.DataFrame( { name: eval_expr(expr, len(_df), DataFrameMapping(_df)) for expr, name in zip(y, derivative_names) } )
[docs] def evaluate_epsilon_gradient( model: Model, etas: Optional[pd.DataFrame] = None, parameters: Optional[ParameterMap] = None, dataset: Optional[pd.DataFrame] = None, ): """Evaluate the numeric epsilon gradient The gradient is evaluated at the current model parameter values or optionally at the given parameter values. The gradient is done for each data record in the model dataset or optionally using the dataset argument. The gradient is done at the current eta values or optionally at the given eta values. This function currently only support models without ODE systems Parameters ---------- model : Model Pharmpy model etas : dict Optional dictionary of eta values parameters : dict Optional dictionary of parameters and values dataset : pd.DataFrame Optional dataset Returns ------- pd.DataFrame Gradient Examples -------- >>> from pharmpy.modeling import load_example_model, evaluate_epsilon_gradient >>> from pharmpy.tools import load_example_modelfit_results >>> model = load_example_model("pheno_linear") >>> results = load_example_modelfit_results("pheno_linear") >>> etas = results.individual_estimates >>> evaluate_epsilon_gradient(model, etas=etas) dY/dEPS_1 0 17.771084 1 28.881859 2 11.441728 3 21.113050 4 29.783055 .. ... 150 25.375041 151 31.833395 152 22.876707 153 31.905095 154 38.099690 <BLANKLINE> [155 rows x 1 columns] See also -------- evaluate_eta_gradient : Evaluate the eta gradient """ y = calculate_epsilon_gradient_expression(model) y = _replace_parameters(model, y, parameters) eps_names = model.random_variables.epsilons.names repl = {Expr.symbol(eps): 0 for eps in eps_names} y = [x.subs(repl) for x in y] df = model.dataset if dataset is None else dataset idcol = model.datainfo.id_column.name if etas is not None: _etas = etas elif model.initial_individual_estimates is not None: _etas = model.initial_individual_estimates else: _etas = pd.DataFrame( 0, index=df[idcol].unique(), columns=model.random_variables.etas.names, ) _df = df.join(_etas, on=idcol) derivative_names = [f'dY/d{eps}' for eps in eps_names] return pd.DataFrame( { name: eval_expr(expr, len(_df), DataFrameMapping(_df)) for expr, name in zip(y, derivative_names) } )
[docs] def evaluate_weighted_residuals( model: Model, parameters: Optional[ParameterMap] = None, dataset: Optional[pd.DataFrame] = None, ): """Evaluate the weighted residuals The residuals is evaluated at the current model parameter values or optionally at the given parameter values. The residuals is done for each data record in the model dataset or optionally using the dataset argument. This function currently only support models without ODE systems Parameters ---------- model : Model Pharmpy model parameters : dict Optional dictionary of parameters and values dataset : pd.DataFrame Optional dataset Returns ------- pd.Series WRES Examples -------- >>> from pharmpy.modeling import load_example_model, evaluate_weighted_residuals >>> from pharmpy.tools import load_example_modelfit_results >>> model = load_example_model("pheno_linear") >>> results = load_example_modelfit_results("pheno_linear") >>> parameters = results.parameter_estimates >>> evaluate_weighted_residuals(model, parameters=dict(parameters)) 0 -0.313859 1 0.675721 2 -1.544240 3 1.921720 4 1.517677 ... 150 1.223935 151 -0.053334 152 -0.007023 153 0.931252 154 0.778389 Name: WRES, Length: 155, dtype: float64 """ omega = model.random_variables.etas.covariance_matrix sigma = model.random_variables.epsilons.covariance_matrix parameters = model.parameters.inits if parameters is None else parameters omega = omega.subs(parameters) sigma = sigma.subs(parameters) omega = omega.to_numpy() sigma = sigma.to_numpy() df = model.dataset if dataset is None else dataset # FIXME: Could have option to gradients to set all etas 0 etas = pd.DataFrame( 0, index=df[model.datainfo.id_column.name].unique(), columns=model.random_variables.etas.names, ) G = evaluate_eta_gradient(model, etas=etas, parameters=parameters, dataset=dataset) H = evaluate_epsilon_gradient(model, etas=etas, parameters=parameters, dataset=dataset) F = evaluate_population_prediction(model) index = df[model.datainfo.id_column.name] G.index = index H.index = index F.index = index WRES = np.float64([]) for i in df[model.datainfo.id_column.name].unique(): Gi = np.float64(G.loc[[i]]) Hi = np.float64(H.loc[[i]]) Fi = F.loc[i:i] DVi = (df['DV'][df[model.datainfo.id_column.name] == i]).astype(np.float64).values Ci = Gi @ omega @ Gi.T + np.diag(np.diag(Hi @ sigma @ Hi.T)) WRESi = linalg.sqrtm(linalg.inv(Ci)) @ (DVi - Fi) WRES = np.concatenate((WRES, WRESi)) return pd.Series(WRES, name='WRES')